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Definition 1.1. We say that v.a. Z has a  power 
series distribution (PSD), if:
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where ( ) 0,,0 >ττ∈θ , ,...a,a 21  are positive real 
numbers and τ  is a positive number meaning  
the convergence radius of power series (series 
function),
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≥

,0,a)(A
1z

z
z ,

and θ  is  the power parameter of the distribution.
Consequence 1.1. To the PSD class belong, 

in particular, the following zero truncated 
distributions: binomial, Poisson, logarithmic, 
geometric, Pascal and negative binomial. Their 
representation is  shown in the Table 1.1.

Consequently, we present for each 
distribution, the representative elements of the 

PSD class: sequence ( ) 1zza ≥ , series function 
)(A θ , as well as the connection between the 

paramether θ  of the power  series and the 
distribution parameters which belong to this 
class; 

1. INTRODUCTION

By convolutions of power series (PSD = 
"power series distribution") we understand  
the lifetime distribution represented by means 
of sum of  non negative i.i.d. r.v., considered 
in a random number with distribution of PSD 
type. They generates , in particular, geometric 
or Pascal convolutins, which  appear in some 
limit theorems in Reliability Theory ([1], [2], 
[8] and [10]). Such convolutions also appear 
in problems related to the Queueing Theory, 
Acturial Mathematics , Risc Theory or Renewal 
Processes. Distributions of  PSD type which 
enclose a whole class of discrete distributions it 
was  introduced in the papper [5]. 

The notion of "the power series distribution 
" class is due to  Noack [11] and Kosambi [6]; 
Noack gives a particular importance to the 
discrete distributions which belong to this class 
(for example: binomial, Poisson, logarithmic, 
geometric, negative binomial [5]).

In the following we reproduce the definition 
of the class of power series distributions.

Let’s consider r.v. Z  such that 
{ }( ) 1,...2,1ZP =∈ .
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Proof. Assume that )1,0(p),p(*Geom~N ∈

, i.e., N belong to the PSD, with 
θ−
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, )1,0(∈θ , p1−=θ . Then the Laplace 

transform of p.d.f. for r.v. NY  is  given by,
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Consequently the Laplace transform of v.a. 

NYpλ , is characterised by the following 
relation:
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Applying the  rule of  l ′Hospital and 

taking into account the properties of Laplace 
transform, we find that:
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i.e., )1(
0
ExpYp

pN →
⇒λ , that’s complet the 

proof.
The following result presents a new variant 

of the limit theorem (generalization of Brown’s 
limit theorem in [8] and [10]).
Theorem 2.2. ([9]) If 1i,Xi ≥  are a non 
negative i.i.d.r.v., with Laplace transform of 

p.d.f. )s()s(
iX ϕ≡ϕ , such that exists mean 

value 
λ

ϕ 1)( 0
' =−= =si sXE , λ >0 and 

)1,0(p),p,k(Pascal~N ∈ , being independent 

of r.v. 1i,Xi ≥ , then ),1,k(ErlangpY
0p

N
→
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all these results are centralized in Table 1.1.

 Table 1.  The representative elements
 of PSD class
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2. LIMIT THEOREMS ABOUT 
CONVOLUTIONS OF POWER SERIES 

TYPE

Given the geometric convolution of the  
exponential distribution and considering the 
elements characteristic to the PSD class for the 
geometric distribution, we obtain a new variant 
of Brown’s limit  theorem ([1], [2]):
Theorem 2.1. ([9]) If 1i,Xi ≥  are a non 
negative i.i.d.r.v., with the Laplace transform 

of p.d.f. )s()s(
iX ϕ≡ϕ , such that exists mean 

value 
λ

ϕ 1)( 0
' =−= =si sXE  , λ >0 and

 )p(*Geom~N , 0< p<1, being independent 
of r.v. 1i,Xi ≥ , then ),1(

0
ExpYp

pN →
⇒λ  for 

N21N X...XXY +++= .
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Proposition 2.2. If r.v. )p(*Geom~N , 
p  (0,1), r.v 1i,Xi ≥  are i.i.d. *)p(*Geom , 

p*∈(0,1),  N and ( ) 1iiX ≥  being independent, 

then r.v. *)pp(*Geom~YN .

Proposition 2.3. If r.v. )p,k(Pascal~N
, p ∈  (0,1), *Nk∈ , r.v. 1i,Xi ≥  are i.i.d. 

*)p(*Geom , p* ∈  (0,1),  N and ( ) 1iiX ≥  being 

independent, then r.v. *)pp,k(Pascal~YN .

As a consequense of Lema 2.1. we have the 
following proposition:

Proposition 2.4. In the conditions of Proposition 
2.2. we have that

 ).1(ExpYpp
0p

N
→

∗ ⇒

Similarly, we have

Proposition 2.5. In the conditions of Proposition 
2.3. we have that 

).1,k(ErlangYpp
0p

N
→

∗ ⇒

In terms of the behaviour of parameter 
which define distribution r.v. N ∈  PSD, we can 
also  formulate the following limit theorem:

Theorem 2.3.  If v.a. N ∈  PSD, 1i,Xi ≥  are 

i.i.d.r.v., N and ( ) 1iiX ≥  being independent, 

then r.v. N21N X...XXY +++=  converges in 
distribution towards r.v. ,1X  as well as:
(a) )p,n(*Binom~N ,  n = 1 or p → 0;
(b) )(*Poisson~N λ , λ > 0,  λ → 0;
(c) )p(Log~N , p ∈  (0,1), p → 1;
(d) )p,k(Pascal~N , p ∈  (0,1), *Nk∈ , 
p → 1.

Proof. The theorem results immediately, 
observing the that in each conditions (a)-(d) the 
probability P(N = 1) → 1, and P(N > 1) → 0.

for N21N X...XXY +++= .
Proof. Assume that )1,0(p),p,k(Pascal~N ∈
, i.e., N belong to the PSD, with *Nk∈  and 
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The Laplace transform of p.d.f of r.v. NY  is :
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Applying the l′Hospital’s  rule, we obtain 

that: 
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limits is exactly the Laplace transform of p.d.f.  
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for Erlang distribution with k degrees of freedom 

and parameter 1. So, ),1,k(ErlangpY
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N
→
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that’s complet the proof.
Remark 2.1. We observe that  for non negative 
r.v. 1i,Xi ≥  the condition to be governed by 
the strong law of large numbers  (according to  
theorems in [1] and [10]) becomes unnecesary 
in the both Theorem 2.1 and Theorem 2.2.

Now we need some auxiliar results, where 
by )p(*Geom  we understand the geometric 
distribution  truncated to zero.
Lemma 2.1. ([4]) If )1,0(p),p(Geom~N ∈ , 
then )1(ExpNp ⇒ for 0p → .
Proposition 2.1 ([7,8]) If  )p,k(Pascal~N ,

*Nk∈ , )1,0(p∈ , then           ).1,k(Erlang~ZpN
0p→

⇒

∈
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The following two limit theorems are  
directly concerned with the connection among 
different distributions of  r.v. N ∈  PSD.
Theorem 2.4. Binomial convolution with 
parameters *Nn∈ , p ∈  (0,1) converges in 
distribution towards Poisson convolution with 
parameter  λ > 0 , as wel as  n → ∞, p → 0 such 
that np → λ.
Proof. According to the  clasical Poisson 
theorem [3], r.v. )p,n(Binom~N converges in 
distribution towards Poisson distribution (λ),  λ 
> 0 if n → ∞, p → 0 such that np → λ. This 
imply our theorem.
Theorem 2.5. Negative binomial convolution 
with parameters  p ∈  (0,1) and *Nk∈  
converges in distribution to the Poisson 
convolution parameter λ > 0 as well as k → ∞, 
p → 1 such that k(1 − p) → λ.
Proof. On the base of Feller’s well known 
result [3], binomial negative distribution (non 
truncated) converges slightly towards  Poisson 
distribution (non truncated). Since this property 
is also preserved when the corresponding 
distributions are truncated to zero, we obtain 
our statement of our theorem.

3. CONCLUSIONS

Because lifetime often occurs not only 
in Reliability, but also in Queueing Theory, 
Actuary, etc., a whole class of convolutions 
has been investigated, namely, those of power 
series type (in absolutely continuous). As a 
consequence of this approach a variant of 
the Limit Theorem has been obtained. This 
generalizes Brown’s Theorem in which the 
restrictive condition that the sum of the r.v. be 
governed by the Strong Law of Large Numbers, 
is not necessary.  New limits theorems in terms 
of convolution, are presented too.


