
Technical Sciences and Applied Mathematics

 15

HOW SOFTWARE COPYRIGHT AND PATENTS LAWS ARE HURTING
REAL INNOVATION

Alexandru ŞTEFAN

Bloomfield College, Bloomfield, New Jersey, USA

Abstract: This paper will focus on software copyright and patents and how current copyright and patent
laws are just not cutting it when it come real innovation. We will also discuss in detail the benefits of
open standards any why more software vendors are moving towards it.

Keywords: software, copyright, patent, open standards.

1. INTRODUCTION

This paper will focus on software

copyright and patents and how current
copyright and patent laws are just not cutting it
when it come real innovation. We will also
discuss in detail the benefits of open standards
any why more software vendors are moving
towards it. A formal definition of copyright is
“the exclusive legal right, given to an
originator or an assignee to print, publish,
perform, film, or record literary, artistic, or
musical material, and to authorize others to do
the same”.

So why is this harmful to innovation,
especially in the software industry? Software
is an ever-changing complex and perishable
item; most applications are almost useless after
5 years. Almost all software vendors no
longer provide any kind of support for
software older then 2-3 years; it just isn’t cost
effective for them to do so. Customers
therefore can’t rely on using software that no
longer supported, but yet paid for. This
software is now considered abandonware since
the company is no longer selling it. It is
considered illegal now to install, edit or copy
abandonware even if the hardware needed to
use the software no longer exists. Developers
would need to wait 75 years after the author’s
death before they can change a peace of
software that once ran on DOS to run under

vista. This is just one example of how
copyright law is harmful to the secondary
works that could be created by abandoned
software.

Another major topic we will focus on is the
topic of open standards. First let’s define open
standard. “An open standard is a specification
that enables users to freely choose and switch
between suppliers, creating a free and open
competition between suppliers. To accomplish
this, an open standard must have the following
properties”.

1. Availability: Open Standards are
available for all to read and implement.

2. Maximize End-User Choice: Open
Standards create a fair, competitive market for
implementations of the standard. They do not
lock the customer in to a particular vendor or
group.

3. No Royalty: Open Standards are
irrevocably free for all to implement, with no
royalty or fee.

4. No Discrimination: Open Standards
and the organizations that administer them do
not favor one implementer over another for
any reason other than the technical standards
compliance of a vendor’s implementation.

5. Extension or Subset: Implementations
of Open Standards may be extended, or
offered in subset form.

6. Protection from Predatory Practices:
Open Standards may employ license terms that

 How Software Copyright and Patents Laws are Hurting Real Innovation

 16

protect against subversion of the standard by
embrace-and-extend tactics. The licenses
attached to the standard may require the
publication of reference information for
extensions, and a license for all others to
create, distribute, and sell software that is
compatible with the extensions. An Open
Standard may not otherwise prohibit
extensions.

7. One World: The same standard should
be applicable for the same capability, world-
wide. It must not be devised as a “barrier to
entry” by those from other regions.

8. On-going Support: The standard is
supportable until user interest ceases rather
than when implementer interest declines.

9. No or nominal cost for specification.
(This may soon become a requirement for no-
cost specifications that can be copied further.
Fees innately discriminate against many users
and implementers, particularly in the third
world; with the rise of the Internet fees
have become a completely unnecessary
discrimination).

First of all, patenting software inventions
takes investment away from research and
development. The cost of obtaining patents
and defending against competitors’ patents
requires that significant funds be diverted

away from research and development. Most
software patents cover either trivial inventions
or inventions that would have been obvious
to persons of ordinary skill in the art at the
time the invention was made. If you
investigate, patents examiners rarely have a
comprehensive knowledge of the specific
technologies disclosed in the patent
applications they examine. Developers may be
forced to pay license fees for standards that are
covered by patents. Let us now look at the
companies that don’t produce software. For
them, software patents allow investment
companies to purchase patents from others and
generate lawsuits to collect revenue off the
monopoly granted by the patent. Therefore,
some believe it to be offensive that a company
that doesn’t create software might benefit from
a patent for software. And there are many
others who understand that these patents are
generally purchased by highly speculative
investors from software producing companies
that were looking for investments.

Since copyright law is very clear in stating
that secondary works cannot be created
without the explicit consent of the copyright
holder. Many open source applications cannot
interact with copyrighted applications and a
format, playing a DVD on a Linux box is a
great example of this. Prior to 2001 it was
illegal to play a DVD on a Linux OS because
the DVD format was not licensed to any Linux
application. We will have to see what happens
with blue ray disks; currently there is no legal
way to watch a blue ray movie on a Linux box.

A patent by default is an implied monopoly
so your competitors can not bring the same
product to market at a cheaper price which
hurts consumers. The main reason we have
patents is to spur innovation. It hurts the open
standard because it reduces competition but
again it’s a necessary evil in order to
encourage innovation. There are more
arguments can be presented against
patentability than for it.

Similar to patents, the argument for
personal copyright is to grant developers
temporary monopolies over their works to
encourage further development by giving the
developer a source of income. There are many
people argue that copyrights originated only in
the last few centuries. However, creativity
flourished well before copyright existed. With
the same thought, developers believe that ideas
and knowledge should not be owned or
controlled, but rather should be distributed
freely throughout society for anyone’s use-as
long as the creator of the original idea is well
acknowledged. In addition, copyrights reduce
the incentive for developers to continue
working, since they can receive and income by
collecting license fees or royalties for popular
older works instead of develop new ones. Most
importantly, limiting innovation is also seen as
unjust.

Many proprietary software companies have
criticized the open-source software movement.
These companies suggest that it undercuts, and
in some cases destroys, the economic
incentives necessary for the software industry
to continue to create quality products by
making them compete with free software.
Proprietary backers and critics alike, also

Technical Sciences and Applied Mathematics

 17

argue that open-source is not sustainable
because it does not provide the economic
incentive necessary for individuals or teams to
devote resources, such as time and effort. At
the core of the pro-intellectual debate is that
making software available without a price tag
attached will eventually drive out proprietary
software developers. As a cause, developers
will not invest in creating proprietary software
because they will not be able to compete with
similar products available at no cost.

In an ideal world, open standards for
software would be the norm. However, many
software developers have been slow to adopt
these standards. The arguments against open
standards include protecting of research and
development investment, justification of the
upfront expense, providing incentives to
keeping technology up-to-date, and reducing
the efficiencies that may be gained by using
proprietary technology to bind together
complex systems.

While producers of proprietary software
provide valid points, they are mostly driven by
profit margins. Open standards reduce barriers
to entry, facilitating a multitude of competition
among suppliers. Many customers can
appreciate the not being locked into a
proprietary technology.

The proprietary software developers argue
for more than non-standardization, they fight
for profitability. The companies battle open
standard are the same companies that stand to
benefit the most from keeping the market the
way it is (i.e. Microsoft). In actuality,
standards tend to invoke innovation and
create foundations for useful, compatible
technologies. The greater the openness, the
greater the participation - Sun Microsystems
has proven this, time and time again.

It’s unlikely anyone would debate the fact
that incentives are beneficial for the promotion
of creativity - but if the incentives are too
strong, giving the initial creator too much
control or control for too long, there would be
little opportunity for secondary works.
Essentially, it creates an under production of
innovation; remove incentive all together
and an under production of initial creators
may occur. Law should be used to promote
innovation, not the lining of a particular

group’s pocket. In a report written by the FTC
on the patent system, they state “Patent policy
is for the benefit of the public, not patent
holders. The ultimate point of granting a patent
is not to reward inventors, but rather to create
incentives for actions - invention, disclosure
and commercial development - that will
further the public interest and thus benefit
consumers over time”.

The introduction of copyright laws was
thought necessary in order to encourage
creativity. It was thought without an incentive
justification others could easily copy and
redistributed an author’s work, quickly driving
the value of the work down. With an author
unable to recoup their original cost or
potentially profit from their work, they may
have been deterred from creative expression.

Copyright laws allow creators to raise
prices above marginal cost of producing
additional copies of the original work. While
providing an incentive to the author but creates
restrictions on who can access or own the
work. The excluded audience is the individuals
that may have purchased the work at a slightly
higher marginal cost but not at a higher price.
An example of this is Microsoft’s software
products. Often, their products are priced
incredibly high, making it difficult for some to
invest in, yet necessary to own in order to be
compatible with other users.

One of the most obvious examples of what
unrestricted standards can lead to is the
Internet. Communication across the web (the
world) may not have been so wide spread or
have grown so quickly without the universal
access to the TCP/IP protocol. In addition
HTML, the code used to power billions of web
sites is an open standard. “Roughly 70 percent
of the servers that seek out Web pages use
open-source Apache software. Open-source
Send-mail is used in 80 percent of e-mail
servers.” The PERL programming language is
considered to be one of the most used
languages on the Internet - PERL is also open
standard. Other open source tools that have
made enormous impacts include database
systems like MySQL, browsers such as
Mozilla Firefox, and the Linux operating
system. While proprietary software is
beneficial and has a place in the software

 How Software Copyright and Patents Laws are Hurting Real Innovation

 18

market, there is no denying that open source
programs also play a significant role in
creativity and communal development.

2. OPEN SOURCE BUSINESS MODEL

PROPOSAL

When the Internet began to evolve as a

medium for business there was much hype that
traditional economics no longer made sense.
Business models were developed that focused
entirely on growth, and did not consider cash
flow. These times have now changed and
things are certainly beginning to normalize.
What is clear however is there are some
unique economic characteristics with regard to
the Internet and software products that are not
as persistent with traditional, tangible
products. This material covers some of these
issues. Business Model is the business' value
proposition, and how it determines to satisfy
that value proposition. Software companies
need to have a specific business model. Many
software companies are operating on a ROI
model, presuming the web site, software
presentation, serves multiple marketing
functions. Alternatively search engines operate
with an advertising revenue business model
(PPC). Software vendors need to determine
whether their business model should focus on
the sale of the software, or it’s after sales
support. Software marketplaces, with respect
on open source software are much more
efficient once a standard for the marketplace is
established. Standards are able to increase the
overall size of the market as the market itself
increases its utility for each consumer.

Standards typically evolve in different
ways:

• Proprietary Standard, owned by a
single or group of companies

• Open Standard, developed by a single
company (or group) and opened to the market
for all to benefit

• Open Standard, developed by a
consortium/industry group, oversees the future
development of the standard.

• In order to help the company’s
management to take a decision, with regarding
the copyright/patent issues, in this chapter we
will cover the differences in Intellectual

Property (IP) laws and also a comparison
between open source licenses based on four
categories: reciprocity reach, sublicensing
options, patent grant, and patent retaliation.
(Table1). The categories were selected based
on software management decision, with
regarding the approach to open source
implementation or open source software
production legal coverage.

Table 1 Proprietary Model vs. Open Source Model

Proprietary Model Open Source Model
Licensor distributes
object code only;
source code is kept a
trade secret

Licensor distributes
source code

Modification are
prohibited

Modification are
permitted

All upgrades, suport
and development are
done by licensor

Licensee may do its
own development
and support on hire
any third party to do
it

Fee are for the
software,
maintenance and
upgrades

Fees, if any, are for
integration,
packaging, support
and consulting

Sublicensing is
prohibited, or is a
very limited right

Sublicensing is
permitted; license
may have do
distribute the source
code to program and
modification

A. Open vs. Closed: An Economic

Perspective Conclusion
Open Source software is available for free;

commercial versions of the same open source
software may also available at a price. These
versions include customers service, packaging,
detailed instructions and free upgrades. (Red
Hat's version of Linux for example.) The
question is: does this pricing structure make
economic sense? Should software be sold on a
per unit basis to recover development costs, or
sold on the basis for charging for ongoing
support.

The factory, industrial age, model would
suggest charging on a per unit basis for the
intellectual property of the code (closed
source). While this makes clear sense for

Technical Sciences and Applied Mathematics

 19

automobiles and houses, that include
significant variable costs per unit, software,
and other digital products tend to have very
small variable costs (zero marginal costs). The
costs associated with these products are fixed
and sunk (development costs). Thus costs
associated with sales of additional units
typically are those for product support after the
sale. This support is important for the product
to be effective for the users in the medium - to
long-term. Thus by charging on a per unit
basis, to try to recover sunk costs, creates an
incentive for developing software that is
purchased but not used (no need for customer
support). While the customer support center is
considered a cost center, the after sales support
will be limiting, which in turn will lead to
under-served customers. A product that
is given away for free, but has a paid
alternative that supports the customer service
infrastructure (a free alternative is required for
the Open Source license for those offering
commercial versions) makes perfect economic
sense. This is the strategy adopted by Red Hat
and this actually extends the market for
the software beyond its traditional base of
hackers. This argument therefore supports the
economic issues related to pricing open source
software, but it can also be applied to ALL
types of software.

It is important to consider the product life
cycle, when considering when to “open
source” a project. Clearly some context has to
be established, such that external developers
are going to be interested enough to contribute
their finite resources to the project. Thus an
alpha version of the product needs to be
complete. This was the case before Linux
announced the Linux Operating System to the
Minix news group. On the other hand, the
project does not want to be so mature; that it is
no longer interesting for external developers
(their ability to contribute becomes marginal).
Since they were not part of the evolutionary
process of earlier development, it is hard to
engage them at later stages.

An argument can be made for offering a
product open source, at a later stage in the life
cycle, to extend the product's life while
shifting internal development resources to new
development efforts. This will help guarantee
the life of the product for the current installed
base until they switch to the new product.

B. Why is Open Source Software
important?

The general analyze conclusion comes with
the following Q&A:

Q: Why is Open Source Software so
important?

A: The Open Source Software Business
Model

 Can be a major source of innovation
 Innovation can happen anywhere - any

time;
 Development through “open

communities” leads to potentially;
 Broad ideas and creativity.
 Community Approach
 Internet has changed how enterprises

address technical innovation.
 Good approach to developing

emerging standards
 Popular Open Source projects can

become de facto / open standards;

 Wide distribution/deployment/
 Enterprise customers are asking for it
 Increase choice and flexibility - ion /

use of Open Source can reduce time to market
C. Life Cycle of Open Source Process

Conclusions

D. Recommendation
1. Open Source Software (OSS) is indeed

the start of a fundamental change in the
software infrastructure marketplace, and is not
a hype bubble that will burst.

2. Within five years, 50% of the volume of
the software infrastructure market should be
taken by OSS.

3. The rise of OSS, offers the possibility
that non-US players will find it easier to
influence the future direction of IT
infrastructure technology.

4. The differences between OSS and
proprietary software are not a major factor in
either improving or degrading the vulnerability
of a nation’s IT infrastructure.

5. We recommend that the Government
obtain full rights to bespoke software that it
procures - this includes any customization of
off-the-shelf software packages.

6. The Open Source model offers a
new paradigm for funding software in

 How Software Copyright and Patents Laws are Hurting Real Innovation

 20

communities-of-interest (e.g. Health and
Education).

3. OPEN SOURCE ROI

FUNDAMENTALS

What are the fundamental issues that

organizations should keep in mind when
thinking about open source ROI? In other
words, what are the ground rules that underpin
open source ROI assessments? Here are five
key realities about open source ROI.

In order to answer those questions, key
realities must be understood at first hand.
While the absence of license fees is obviously
attractive, the enormous amount of work
required to implement an open source solution
could outweigh the license fee savings of the
product. Thus, all aspects of the system must
be taken into account to ensure a full financial
evaluation and accurate assessment of OSS
ROI. Moreover, it is important to understand
the soft and hard costs associated with open
source. Software costs are associated with the
use of internal company personnel in terms of
employee time spent installing, configuring,
and integrating an open source product, which
imposes salary costs. These costs are difficult
to calculate accurately and many organizations
do not have an explicit internal cost assigned
for employee time which results in a
significant portion of the overall project cost.
Hard costs are incurred if an outside consultant
is used, or if new hardware is purchased to run
the open source system. These types of costs
usually require explicit payments and are easy
to calculate. Consequently, it’s vital to fully
account for all costs associated with an open
source system to ensure an accurate
ROI figure is calculated. In addition to
these concerns, many projects have
financial calculations performed for initial
implementation or for the first full year of
operation. This form of financial analysis
ignores a fundamental IT reality: systems have
extended lifespan, since organizations are
reluctant to replace a working system, given
the cost and disruption associated with
replacement. Consequently, it is vital to use
a realistic timeframe for project ROI
calculations. It is particularly important to do

so for open source-based systems. Since much
of the cost of these systems is in early
investment for internal personnel to learn and
customize the open source product, a short
project time horizon can make it seem that an
open source system is more expensive than
a commercially-licensed product. However,
because commercial products carry yearly
maintenance fees, using a longer time horizon
can more accurately calculate true project
costs for the realistic time frame of the system.
Consequently, when making an open source
project ROI calculation, it is vital to use a
realistic project life projection, since this will
enable a more accurate ROI assessment. A
common practice for ROI project planning is
to create a table with ROI calculations based
upon three, five, and 10 year project durations.
This allows project planning to proceed with a
broader range of ROI information available to
assist the decision process.

Most of the costs included in calculating an
open source ROI can be assigned to three
primary categories. License, support, and
maintenance costs reflect the payment made to
an outside entity in order to gain access to use
of software. License fees are well understood
as the up-front payment made before a vendor
delivers software, while Support/Maintenance
refers to the yearly payments required so that
customers may gain access to patches and
enhancements for software that has already
been licensed. These costs are hard costs, since
they always are invoiced by an outside entity,
thereby ensuring access to the software
product. IT/Service provider costs are those
required for technical personnel and are
associated with the work of installing,
configuring, customizing, and operating the
software. The factors affecting the size of this
cost are how difficult a piece of software is to
install and configure as well as how much
custom programming and integration are
necessary to modify the product to meet
the organization’s functional requirements.
Depending upon whether the technical work is
done by internal or external people, this cost
can be either soft or hard, or, indeed, can be a

3.1. The Components of Open Source ROI

Technical Sciences and Applied Mathematics

 21

mix of soft and hard. For this reason, it is
important to carefully assess the amount of
work necessary to fully implement an open
source system. Organizational costs are those
borne by the end users of a new system. Often
referred to as “cognitive load,” these costs
reflect the learning curve imposed by new
software. When a user begins to utilize new
software, productivity goes down, since he or
she is unfamiliar with the new system.
The overall cost experienced due to this
temporary reduced productivity is captured in
Organizational costs.

When an organization internally develops
custom software system it produces software
that meets its exact requirements, rather than
using an externally developed package that
forces it to compromise on its requirements.
However, the downside of custom develop-
ment is also clear: it’s expensive to write
custom systems from scratch. Open source in
this case is a wining strategy because it is
distributed with binaries and source code
rather than binary format alone, which is
typical of commercial software products, thus
enabling companies to use it as components
within its internal system and add its
organization-specific code to the core product.
In this fashion, it can still achieve its aim of
creating a system that meets its exact
requirements while avoiding the cost of
developing the entire system top to bottom.
IT/Services costs are much lower when using
open source software in this case because
rather than absorbing all development costs
itself; the company is able to take advantage of
the investment by other developers and
organizations in the open source product. In
addition to the cost savings associated with
development, there are ongoing savings as
well made possible by the use of community
of developers that fix bugs and enhance the
software at no charge for the company. By
contrast, should a company develop a custom
system internally; it will take on the entire
expense of bug fixing and product
enhancement. Organizational costs may also

be lower when using open source software
since many other organizations have offered
feedback about the software to the open source
developers; this feedback has enabled them to
improve the usability of the product. By
contrast, a custom-built piece of software will
have to begin receiving and incorporating
feedback upon initial release, which means
that the software will not be as user-friendly as
an open source counterpart. It is therefore
recommended that organizations should prefer
use of open source software in this scenario to
reach higher ROI, but must be careful in
assessing whether the requirements of the
company mandate internal development.

3.2. Open Source ROI Scenarios

A. Custom system vs. OSS

B. New system vs. OSS
If an organization is considering

implementing a system that utilizes technology
the organization has no experience in using,
then it will need to invest in training and skill
development whether it uses a commercial or
an open source product. For this reason, the
IT/Services costs are similar for both open
source and commercial alternatives. Similarly,
because the system is new, the Organizational
costs experienced upon system introduction
are equal. After all, whether the system uses
commercial or open source software, users
will be learning a new application; therefore
the Organizational costs will reflect the
learning curve costs experienced by the user
base.

The primary ROI difference in this
scenario is the cost of the software itself.
While the organization may choose to engage
a commercial open source vendor to provide a
subscription or support for the selected open
source product, it is still likely to realize
significant savings in comparison to the
license fees associated with the commercial
counterpart to the open source product.
Typical savings available from open source
subscription versus commercial license range
from 75% to 90%, indicating the potential
savings by selecting open source. The general
strategy for this scenario is to consider open
source as the default choice, and examine the
detailed financial situation in order to make a
final decision.

C. Commercial vs. OSS (Dissimilar
technologies)

 How Software Copyright and Patents Laws are Hurting Real Innovation

 22

Sometimes an organization can consider
replacing an existing commercial software
system with an open source alternative that is
based on a different technology, such as
replacement of a Windows server with a Linux
machine. While it is clear that this scenario has
the potential to save License/Maintenance
fees, the savings may not be as dramatic as
they would appear at first glance. Since the
initial license fee for the commercial software
was paid in the past, it is a sunk cost that is
unrecoverable at the current point in time. In
this case, the ROI would depend on the cost
of ongoing maintenance fees compared to
the subscription or support fees possibly
associated with the open source alternative
available to the organization. However, the
IT/Services and Organizational costs for the
open source alternative may be significantly
higher if an open source choice is made
because the organization has already made a
significant investment in skill development
and overcoming the user base cognitive load
associated with the existing system. Rather
than absorbing such a significant cost all at
once due to a cutover to the new software,
organizations often adopt a “Surround and
Extend” strategy, in which the existing
commercial software products are left in place
and new open source products are
implemented to provide complementary
functionality. In this way, the organization can
begin to realize the benefits of open source,
while gradually investing in building
IT/Services skills as well as user skills.
Consequently, this scenario often poses ROI
challenges in making an open source choice. A
common example of this approach is the use of
Linux as a file/print server in a Microsoft
Windows Server infrastructure. The existing
Windows Servers continue to provide
application functionality, while the company
begins to use Linux in a low-investment, low-
risk fashion. The duration of the project is also
critical in this scenario, since the initial costs
of building IT/Services skills, implementing
the system, and educating the user base must
be compared against the total amount of
commercial software maintenance fees to be
paid during the lifetime of the project.
Different project duration assumptions may

dramatically change the ROI of the project, so
a complete analysis of the project is important
for this scenario.

D. Commercial vs. OSS (Similar
technologies)

The circumstances are significantly
different when the two alternatives share a
common technology basis. No additional
investment in skill development is necessary in
this scenario. The organization has already
made that investment for the existing
commercial product, which means that little
additional investment is necessary when
shifting to a new open source product. This is
a common experience when comparing
standards-based products, because the two
products are bound to resemble one another,
given that they both implement the same
standard. For example, if an organization
already has a significant installed base of a
commercial Java application server like Web
Sphere or WebLogic, the cost of moving to a
comparable open source product like JBoss is
likely to be quite small, since most of the skills
necessary for the commercial products will
transfer quite easily to the open source
product. In this scenario, the IT/Services and
Organizational costs are the same for both the
commercial and open source alternatives; the
primary difference between the alternatives is
the cost of ongoing commercial maintenance
compared to any subscription costs for
the open source product. The recommended
strategy is to seek out these opportunities very
aggressively, since they present very high ROI
potential.

REFERENCES

1. www.linuxmagazine.com;
2. www.infoworld.com;
3. Cope, R., and Stormy, Integrating OSS

into Your Environment, February 2006;
www.linuxworld.com;

4. David, M., Wednesday, W., Open source
software and the future of the world, 06
February 2008; www.itwire.com;

5. www.rfgonline.com;
6. http://www.dwheeler.com/essays/opendoc

ument-open.html.

	REFERENCES

