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Abstract: Our purpose in this paper is to give the sufficient conditions for the oscillation of solutions of 
nonlinear difference equation of the form: 

( ) ( )
nn n n na u b f u τ−Δ Δ + = 0

n

, n = 0, 1, 2,…                        (01) 
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1. INTRODUCTION 
 

In this note we consider the nonlinear 
difference equation of the form (01). 
Where: ∆ denotes the forward difference 
operator,  for any sequence 

of real numbers;  
1n nu u u+Δ = −

( )nu
(bn) is a sequence of real numbers; 
(τn) - is a sequence of integers such that:  

lim( )nn
n τ

→∞
− = ∞ ; 

( ) - is a sequence of positive numbers and na
1 1n

n
k o k

R
a

−

=

= →∑ ∞ , as n → ∞; 

f :R → R - is a continuous with 
uf(u) > 0  (u  0). ≠
By a solution of Equation (01) we mean a 

sequence  which is defined for  ( )nu

0
min( )ii

n i τ
≥

≥ −  

and satisfies Equation (1) for all large n.  
    A nontrivial solution of (1) is said to be 
oscillatory if for every  there exists an 

 such   ≤ 0. Otherwise it is called 
nonoscillatory.  

( )nu

0n > 0

0n n> nu 1nu +

In several recent papers the oscillatory 
behaviour of solutions of nonlinear difference 
quations have been discussed e.g. see [2,3,5,6]. 
Our purpose in this paper is to give the 

sufficient conditions for the oscillation of 
solutions of Equation (01).  

 
2. MAIN RESULTS 

 
Theorem 1. Assume that 

0
n

n
b

∞

=

i. bn ≥ 0  and  = ∞∑ , 

ii. lim inf ( ) 0
u

f u
→∞

>

( )nu
( )nu

0n
0nu τ− > 0n n>

( ) ( )n n n n ra u b f u −

.     

Then every solution of Equation (01) is 
oscillatory. 

Proof: Assume, that Equation (01) has 
nonoscillatory solution , and we assume 
that   is eventually positive. Then there is 
a positive integer  such that 

n

From the Equation (01) we have:  
,  for           (02) 

n
Δ = − 0n n> ( )n na u,  and so Δ Δ  

is an eventually nonincreasing sequence. We 
first show that 0n na uΔ ≥ 0n n≥

1 0n≥ 0n na u cΔ = <

n na u

 for . In fact, if 
there is an n  such that  and 

Δ  ≤ c for  that is 1n n> n
n

cu
a

Δ ≤  and 

hence 

1

1

1 1n

n n
k n k

u u c
a

−

=

+ → −∞∑  as n→∞ ≤
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which contradicts the fact that xn > 0               
for . Hence  for . 
Therefore we obtain: 

1n n>
1 1

0n na uΔ ≥ 0n n≥

0
nnu τ− > ,  ,   0nuΔ ≥

( )n na uΔ Δ ≤ 0

)

 for  . 0n n≥
Let .  lim n

n
L u

→∞
=

Then L > 0 is finite or infinite. 
Case 1:  L > 0 is finite. 
From the continuity of function f(u) we 

have:   Thus, we may 

choose a positive integer such that: 

lim ( ) ( ) 0.
nnn

f u f Lτ−→∞
= >

3 (n ≥ 0n
1( ) ( )
2nnf u fτ− > L 3n n≥,                      (03) 

By substituting (03) into Equation (01) we 
obtain: 

1( ) ( ) 0 3n n≥
2n n na u f L bΔ Δ + ≤

)

,           (04) 

Summing up both sides of (04) from n3 to 
, we obtain: 3(n n≥

3 3

3

1 1
1 ( ) 0
2

n

n n n n i
i n

a u a u f L b+ +
=

Δ − Δ + ≤∑   

and so  

3 3

3

1 ( )
2

n

i n n
i n

f L b a u
=

≤ Δ∑ , ,  3n n≥

which contradicts  (i).  
Case 2:  L = ∞. 
For this case, from the condition (ii)        

we have  and so we may 

choose a positive constant c and a positive 
integer n4 sufficiently large such that:  

liminf ( ) 0
nn

n

f u τ−
→∞

>

( )
nnf u cτ− ≥  for  .                     (05) 4n n≥

Substituting (5) into Equation (1) we have: 
( )n n na u cbΔ Δ + ≤ 0 4n n≤,  . 

Using the similar argument as that of Case 
1 we may obtain a contradiction to the 
condition (i). This completes the proof. 

 

Theorem 2. Assume, that 
i. bn ≥ 0 and then every bounded solution of 
(01) is oscillatory. 

Proof: Proceeding as in the proof of 
Theorem1 with assumption that  is a 
bounded nonoscillatory solution of (01) we get 
the inequality (04) and so we obtain: 

( )nu

1( ) ( ) 0
2n n n n nu f L R bR aΔ Δ + ≤ 3.n≥

( ) ( ) .n n n n n n n n n

, n   (06) 

It is easy to see that:  
R a u R a u a u RΔ Δ ≥ Δ Δ − Δ Δ  (07) 
From inequalities (6) and (7) we deduce: 

3 3 3

1) ( ) 0
2

n n n

k k k k k k
k n k n k n

R a u u f L R b
= = =

Δ Δ − Δ + ≤∑ ∑ ∑

3.n n≥

, 

 
which implies  

3 3 3 3

3

1
1 ( ) )
2

n

k k n n n n n
k n

f L R b u R a u u+
=

≤ + Δ −∑ 3.n n≥

3

n

k k
k n

,  

Hence there exists a constant c such that: 

R b c
=

≤∑ 3n≥, for all n , 

contrary to the assumption of the theorem. 
 

Theorem 3. Assume that 
i. (n − τn) is nondecreasing, where τn ∈  {0, 1, 
2,…}; 
ii. there is a subsequence of (an), say  
such that  ≤ 1 for k = 0, 1, 2,…; 

( )
knu

knu

0
,n

n
b

∞

=

iii. = ∞∑  

iv. f is nondecreasing and there is a 
nonnegative constant M such that: 

                      (08) 
0

limsup
( )u

u M=
f u→

Then the difference  of every 
solution  of Equation (1) oscillates. 

( )nuΔ
( )nu

( )nu ( )nu
Proof: If not, then Equation (01) has a 

solution  such that its difference Δ  is 
nonoscillatory. Assume first that the sequence 
( )nuΔ  is eventually negative. Then there is a 
positive integer n0 such that Δ < 0   

and so  is decreasing for  which 
implies that ( is also nonoscillatory.  Set 

nu 0n n≥
( )nu 0n n≥

)nu

( )
n

n
n

n

aw
f x τ−

= 1 0n n n≥ ≥

nw

,           (09) 

then 

Δ =
1

1

1( ) ( )
n n

n n n n

n n

a u a u
f u f uτ τ+

+

+ − −

Δ Δ
−  

       = ( )
( )

n na u
f u
Δ Δ

1 1n na u+ +Δ
nn τ−

+  
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1

1

1

1

( ) ( )
)

−

( ) (
n n

n n

n n

n n

f u f u
f u f u

τ τ

τ τ

+

+

− +

+ − −

− ( )
( )

n

n n

n

a u
f u τ−

Δ Δ
≤ =  (10)  nb−

   1n n≥
Summing up both sides of (10) from n1 to 

n, we have:  and, by (iii), 

we get 

1

1

1

n

n n
i n

w w+
=

− ≤ −∑ ib

0

lim nx
w

→∞
= −∞ ,            (11) 

which implies that eventually 
( )

nnf u τ− >            (12) 
and therefore . By (11), we can 
choose n  suchthat , . 

0
nnu τ− >

1)2 ( n≥ ( 1)nw M≤− + 2n n≥
That is: 

( 1) ( )
nn n na u M f u τ−Δ + + ≤0 2n n≥,             (13) 

Set  Then L ≥ 0. Now we prove 

that L = 0. If L > 0, then we have 

lim .nx
u L

→∞
=

lim ( ) ( ) 0
nnn

f u f Lτ−→∞
= > , 

by the continuity of f(u). Choosing an  
sufficiently large, such that: 

3n

 1( ) ( )
2nnf u fτ− > L 3n n≥,           (14) 

and substituting (14) into (13), we have: 
1 ( 1) ( ) 0 2n n≥

2n
n

u M f L
a

Δ + + ≤ ,         (15) 

Summing up both sides of (15) from  to 
n we get 

3n

3

3

1
1 1( 1) ( )

2

n

n n
i nn i

u u M f L
a+

=

− + + ≤∑ 0
a

 

which implies that lim nn
u

→∞
= −∞ . 

This contradicts (12). Hence lim 0nn
u

→∞
= . 

By the assumptions we have:  

lim sup
( )

n

n

n

n
n

u
M

f u
τ

τ

−

→∞
−

≤  

From this we can choose , such that: 4n

( )
n

n

n

n

u
M

f u
τ

τ

−

−

≤ +1,  4n n≥

That is  +1, 
 and so from (13) we get: 

( 1) (
nn nu M f uτ τ− −≤ + )

n

( )
kna

1 1( ) 0
kk k k k k k k nkn n n n n n nn

u u u a u u uτ τ+ − + −

4n n≥

In particular, from (16) for a subsequence 
 satisfying the condition (ii), we have: 

− + ≤ − + <

10 ( ) 0
k k n kkn n nu u uτ+ −

 

for k sufficiently large, which implies that  
+ − <

( )nu

 for all large k. <

This is a contradiction. The case that Δ  
is eventually positive can be treated in a 
similar fashion and so the proof of Theorem 3 
is completed. 

 
3. CONCLUSION 

 
This study presents the design and 

implementation of the sufficient conditions for 
the oscillation of solutions the nonlinear 
difference equation of the form (01). 

We believe that the present studies can be 
useful for the oscillation behavior of solutions 
of second order linear and nonlinear damped 
difference equations of the following forms: 

1( ) 0,  n=0,1,2,...n n n n n na u b u c u +  Δ Δ + Δ + =

1( ) ( ) 0n n n n n na u b u c f u +

0,
nn n na u u τ−Δ + <                       (16) 4n n≥

 

Δ Δ + Δ + =

1( ( ) ) 0n n n n n n na u u b u c u
 

ϕ +Δ Δ + Δ + =

1( ( ) ) ( ) 0n n n n n n na u u b u c f u
 

ϕ +Δ Δ + Δ + =  
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