SUFFICIENT CONDITIONS FOR THE OSCILLATION OF SOME NONLINEAR DIFFERENCE EQUATIONS

Gheorghe ANTON*, Gheorghe RADU**
*Trades and Services High School, Buzău
**"Henri Coandă" Air Force Academy, Braşov

Abstract

Our purpose in this paper is to give the sufficient conditions for the oscillation of solutions of nonlinear difference equation of the form: $$
\begin{equation*} \Delta\left(a_{n} \Delta u_{n}\right)+b_{n} f\left(u_{n-\tau_{n}}\right)=0, n=0,1,2, \ldots \tag{01} \end{equation*}
$$

Key words: difference equations, oscillatory and periodic solutions. 2000 Mathematics Subject Classification: 39A11.

1. INTRODUCTION

In this note we consider the nonlinear difference equation of the form (01).
Where: Δ denotes the forward difference operator, $\Delta u_{n}=u_{n+1}-u_{n}$ for any sequence $\left(u_{n}\right)$ of real numbers;
$\left(b_{n}\right)$ is a sequence of real numbers;
$\left(\tau_{\mathrm{n}}\right)$ - is a sequence of integers such that:

$$
\lim _{n \rightarrow \infty}\left(n-\tau_{n}\right)=\infty ;
$$

$\left(a_{n}\right)$ - is a sequence of positive numbers and

$$
R_{n}=\sum_{k=o}^{n-1} \frac{1}{a_{k}} \rightarrow \infty, \text { as } \mathrm{n} \rightarrow \infty ;
$$

$f: R \rightarrow R$ - is a continuous with
$u f(u)>0 \quad(u \neq 0)$.
By a solution of Equation (01) we mean a sequence (u_{n}) which is defined for

$$
n \geq \min _{i \geq 0}\left(i-\tau_{i}\right)
$$

and satisfies Equation (1) for all large n.
A nontrivial solution $\left(u_{n}\right)$ of (1) is said to be oscillatory if for every $n_{0}>0$ there exists an $n>n_{0}$ such $u_{n} u_{n+1} \leq 0$. Otherwise it is called nonoscillatory.

In several recent papers the oscillatory behaviour of solutions of nonlinear difference quations have been discussed e.g. see [2,3,5,6]. Our purpose in this paper is to give the
sufficient conditions for the oscillation of solutions of Equation (01).

2. MAIN RESULTS

Theorem 1. Assume that
i. $b_{\mathrm{n}} \geq 0$ and $\sum_{n=0}^{\infty} b_{n}=\infty$,
ii. $\lim _{|u| \rightarrow \infty} \inf |f(u)|>0$.

Then every solution of Equation (01) is oscillatory.

Proof: Assume, that Equation (01) has nonoscillatory solution $\left(u_{n}\right)$, and we assume that $\left(u_{n}\right)$ is eventually positive. Then there is a positive integer n_{0} such that

$$
\begin{equation*}
u_{n-\tau_{n}}>0, \text { for } n>n_{0} \tag{02}
\end{equation*}
$$

From the Equation (01) we have:
$\Delta\left(a_{n} \Delta u_{n}\right)=-b_{n} f\left(u_{n-r_{n}}\right), n>n_{0}$ and so $\left(a_{n} \Delta u_{n}\right)$ is an eventually nonincreasing sequence. We first show that $a_{n} \Delta u_{n} \geq 0$ for $n \geq n_{0}$. In fact, if there is an $n_{1} \geq n_{0}$ such that $a_{n} \Delta u_{n}=c<0$ and $a_{n} \Delta u_{n} \leq \mathrm{c}$ for $n>n_{1}$ that is $\Delta u_{n} \leq \frac{c}{a_{n}}$ and hence

$$
u_{n} \leq u_{n_{1}}+c \sum_{k=n_{1}}^{n-1} \frac{1}{a_{k}} \rightarrow-\infty \text { as } \mathrm{n} \rightarrow \infty
$$

which contradicts the fact that $\mathrm{x}_{\mathrm{n}}>0$ for $n>n_{1}$. Hence $a_{n_{1}} \Delta u_{n_{1}} \geq 0$ for $n \geq n_{0}$. Therefore we obtain:

$$
\begin{aligned}
& u_{n-\tau_{n}}>0, \Delta u_{n} \geq 0, \\
& \Delta\left(a_{n} \Delta u_{n}\right) \leq 0 \text { for } n \geq n_{0} . \\
& \text { Let } L=\underset{n \rightarrow \infty}{\lim u_{n}} .
\end{aligned}
$$

Then $L>0$ is finite or infinite.
Case 1: $L>0$ is finite.
From the continuity of function $f(u)$ we have: $\lim _{n \rightarrow \infty} f\left(u_{n-\tau_{n}}\right)=f(L)>0$. Thus, we may choose a positive integer $n_{3}\left(\geq n_{0}\right)$ such that:

$$
\begin{equation*}
f\left(u_{n-\tau_{n}}\right)>\frac{1}{2} f(L), \mathrm{n} \geq \mathrm{n}_{3} \tag{03}
\end{equation*}
$$

By substituting (03) into Equation (01) we obtain:

$$
\begin{equation*}
\Delta\left(a_{n} \Delta u_{n}\right)+\frac{1}{2} f(L) b_{n} \leq 0, n \geq n_{3} \tag{04}
\end{equation*}
$$

Summing up both sides of (04) from n_{3} to $n\left(\geq n_{3}\right)$, we obtain:

$$
a_{n+1} \Delta u_{n+1}-a_{n_{3}} \Delta u_{n_{3}}+\frac{1}{2} f(L) \sum_{i=n_{3}}^{n} b_{i} \leq 0
$$

and so

$$
\frac{1}{2} f(L) \sum_{i=n_{3}}^{n} b_{i} \leq a_{n_{3}} \Delta u_{n_{3}}, \mathrm{n} \geq \mathrm{n}_{3}
$$

which contradicts (i).
Case 2: $\mathrm{L}=\infty$.
For this case, from the condition (ii) we have $\liminf f\left(u_{n-\tau_{n}}\right)>0$ and so we may choose a positive constant c and a positive integer n_{4} sufficiently large such that:

$$
\begin{equation*}
f\left(u_{n-\tau_{n}}\right) \geq c \text { for } n \geq n_{4} . \tag{05}
\end{equation*}
$$

Substituting (5) into Equation (1) we have:
$\Delta\left(a_{n} \Delta u_{n}\right)+c b_{n} \leq 0, n \leq n_{4}$.
Using the similar argument as that of Case 1 we may obtain a contradiction to the condition (i). This completes the proof.

Theorem 2. Assume, that
i. $b_{n} \geq 0$ and then every bounded solution of (01) is oscillatory.

Proof: Proceeding as in the proof of Theorem1 with assumption that $\left(u_{n}\right)$ is a bounded nonoscillatory solution of (01) we get the inequality (04) and so we obtain:

$$
\begin{equation*}
R_{n} \Delta\left(a_{n} \Delta u_{n}\right)+\frac{1}{2} f(L) R_{n} b_{n} \leq 0, n \geq n_{3} . \tag{06}
\end{equation*}
$$

It is easy to see that:

$$
\begin{equation*}
R_{n} \Delta\left(a_{n} \Delta u_{n}\right) \geq \Delta\left(R_{n} a_{n} \Delta u_{n}\right)-a_{n} \Delta u_{n} \Delta R_{n} \tag{07}
\end{equation*}
$$

From inequalities (6) and (7) we deduce:
$\left.\sum_{k=n_{3}}^{n} \Delta R_{k} a_{k} \Delta u_{k}\right)-\sum_{k=n_{3}}^{n} \Delta u_{k}+\frac{1}{2} f(L) \sum_{k=n_{3}}^{n} R_{k} b_{k} \leq 0$,
$n \geq n_{3}$.
which implies
$\left.\frac{1}{2} f(L) \sum_{k=n_{3}}^{n} R_{k} b_{k} \leq u_{n+1}+R_{n_{3}} a_{n_{3}} \Delta u_{n_{3}}\right)-u_{n_{3}}, n \geq n_{3}$.
Hence there exists a constant c such that:

$$
\sum_{k=n_{3}}^{n} R_{k} b_{k} \leq c, \text { for all } n \geq n_{3},
$$

contrary to the assumption of the theorem.
Theorem 3. Assume that
i. $\left(\mathrm{n}-\tau_{\mathrm{n}}\right)$ is nondecreasing, where $\tau_{\mathrm{n}} \in\{0,1$, $2, \ldots\}$;
ii. there is a subsequence of $\left(a_{\mathrm{n}}\right)$, say $\left(u_{n_{k}}\right)$
such that $u_{n_{k}} \leq 1$ for $k=0,1,2, \ldots$;
iii. $\sum_{n=0}^{\infty} b_{n}=\infty$,
iv. f is nondecreasing and there is a nonnegative constant M such that:

$$
\begin{equation*}
\lim _{u \rightarrow 0} \sup \frac{u}{f(u)}=M \tag{08}
\end{equation*}
$$

Then the difference $\left(\Delta u_{n}\right)$ of every solution $\left(u_{n}\right)$ of Equation (1) oscillates.

Proof: If not, then Equation (01) has a solution $\left(u_{n}\right)$ such that its difference $\left(\Delta u_{n}\right)$ is nonoscillatory. Assume first that the sequence (Δu_{n}) is eventually negative. Then there is a positive integer n_{0} such that $\Delta u_{n}<0 \quad n \geq n_{0}$ and so $\left(u_{n}\right)$ is decreasing for $n \geq n_{0}$ which implies that $\left(u_{n}\right)$ is also nonoscillatory. Set

$$
\begin{equation*}
w_{n}=\frac{a_{n}}{f\left(x_{n-\tau_{n}}\right)}, \quad n \geq n_{1} \geq n_{0} \tag{09}
\end{equation*}
$$

then

$$
\begin{aligned}
\Delta w_{n} & =\frac{a_{n+1} \Delta u_{n}}{f\left(u_{\left.n+1-\tau_{n+1}\right)}\right)}-\frac{a_{n} \Delta u_{n}}{f\left(u_{n-\tau_{n}}\right)} \\
& =\frac{\Delta\left(a_{n} \Delta u_{n}\right)}{f\left(u_{n-\tau_{n}}\right)}+a_{n+1} \Delta u_{n+1}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{f\left(u_{n-\tau_{n}}\right)-f\left(u_{n+1-\tau_{n+1}}\right)}{f\left(u_{n+1-\tau_{n+1}}\right) f\left(u_{n-\tau_{n}}\right)} \leq \frac{\Delta\left(a_{n} \Delta u_{n}\right)}{f\left(u_{n-\tau_{n}}\right)}=-b_{n} \\
& \quad n \geq n_{1}
\end{aligned}
$$

Summing up both sides of (10) from n_{1} to n, we have: $w_{n+1}-w_{n_{1}} \leq-\sum_{i=n_{1}}^{n} b_{i}$ and, by (iii), we get

$$
\begin{equation*}
\lim _{x \rightarrow \infty} w_{n}=-\infty, \tag{11}
\end{equation*}
$$

which implies that eventually

$$
\begin{equation*}
f\left(u_{n-\tau_{n}}\right)>0 \tag{12}
\end{equation*}
$$

and therefore $u_{n-\tau_{n}}>0$. By (11), we can choose $n_{2}\left(\geq n_{1}\right)$ suchthat $w_{n} \leq-(M+1), n \geq n_{2}$. That is:

$$
\begin{equation*}
a_{n} \Delta u_{n}+(M+1) f\left(u_{n-\tau_{n}}\right) \leq 0, n \geq n_{2} \tag{13}
\end{equation*}
$$

Set $\lim _{x \rightarrow \infty} u_{n}=L$. Then $\mathrm{L} \geq 0$. Now we prove that $\mathrm{L}=0$. If $\mathrm{L}>0$, then we have

$$
\lim _{n \rightarrow \infty} f\left(u_{n-\tau_{n}}\right)=f(L)>0,
$$

by the continuity of $\mathrm{f}(\mathrm{u})$. Choosing an n_{3} sufficiently large, such that:

$$
\begin{equation*}
f\left(u_{n-\tau_{n}}\right)>\frac{1}{2} f(L), n \geq n_{3} \tag{14}
\end{equation*}
$$

and substituting (14) into (13), we have:

$$
\begin{equation*}
\Delta u_{n}+\frac{1}{2 a_{n}}(M+1) f(L) \leq 0, n \geq n_{2} \tag{15}
\end{equation*}
$$

Summing up both sides of (15) from n_{3} to n we get

$$
u_{n+1}-u_{n_{3}}+\frac{1}{2 a_{n}}(M+1) f(L) \sum_{i=n_{3}}^{n} \frac{1}{a_{i}} \leq 0
$$

which implies that $\lim _{n \rightarrow \infty} u_{n}=-\infty$.
This contradicts (12). Hence $\lim _{n \rightarrow \infty} u_{n}=0$.
By the assumptions we have:

$$
\lim _{n \rightarrow \infty} \sup \frac{u_{n-\tau_{n}}}{f\left(u_{n-\tau_{n}}\right)} \leq M
$$

From this we can choose n_{4}, such that:

$$
\frac{u_{n-\tau_{n}}}{f\left(u_{n-\tau_{n}}\right)} \leq M+1, n \geq n_{4}
$$

That is $\quad u_{n-\tau_{n}} \leq(M+1) f\left(u_{n-\tau_{n}}\right)+1$, $n \geq n_{4}$ and so from (13) we get:

$$
\begin{equation*}
a_{n} \Delta u_{n}+u_{n-\tau_{n}}<0, n \geq n_{4} \tag{16}
\end{equation*}
$$

In particular, from (16) for a subsequence $\left(a_{n_{k}}\right)$ satisfying the condition (ii), we have:
$u_{n_{k}+1}-u_{n_{k}}+u_{n_{k}-\tau_{n_{k}}} \leq a_{n_{k}}\left(u_{n_{k}+1}-u_{n_{k}}\right)+u_{n_{k}-\tau_{n_{k}}}<0$
for k sufficiently large, which implies that $0<u_{n_{k}+1}+\left(u_{n_{k}-\tau_{n k}}-u_{n_{k}}\right)<0$ for all large k .

This is a contradiction. The case that $\left(\Delta u_{n}\right)$ is eventually positive can be treated in a similar fashion and so the proof of Theorem 3 is completed.

3. CONCLUSION

This study presents the design and implementation of the sufficient conditions for the oscillation of solutions the nonlinear difference equation of the form (01).

We believe that the present studies can be useful for the oscillation behavior of solutions of second order linear and nonlinear damped difference equations of the following forms:

$$
\begin{aligned}
& \Delta\left(a_{n} \Delta u_{n}\right)+b_{n} \Delta u_{n}+c_{n} u_{n+1}=0, \mathrm{n}=0,1,2, \ldots \\
& \Delta\left(a_{n} \Delta u_{n}\right)+b_{n} \Delta u_{n}+c_{n} f\left(u_{n+1}\right)=0 \\
& \Delta\left(a_{n} \varphi\left(u_{n}\right) \Delta u_{n}\right)+b_{n} \Delta u_{n}+c_{n} u_{n+1}=0 \\
& \Delta\left(a_{n} \varphi\left(u_{n}\right) \Delta u_{n}\right)+b_{n} \Delta u_{n}+c_{n} f\left(u_{n+1}\right)=0
\end{aligned}
$$

REFERENCES

1. Szmanda, B., Oscillation criteria for second order nonlinear equations, Ann. Polon. Math. 43, 1983, p. 225-235;
2. Szmanda, B., Oscillatory behaviour of certain difference equations, Fasc. Math. 21, 1990, p. 65-78;
3. Anton, G., Radu, Gh, Ecuații cu diferențe şi scheme de calcul, Editura Albastră, Cluj-Napoca, 2008;
4. Hooker, J.W., Patula, W.T., Second order nonlinear difference equation: oscillation and asymptotic behaviour, J. Math. Anal. Appl. 91, 1983, p. 09-29;
5. Popenda, J., Oscillation and nonoscillation theorems for second order difference equations, J. Math. Anal. Appl. 123, 1987, p. 34-38;
6. Szafranski, Z., On some oscillation criteria for difference equations of second order, Fasc. Math. 14, 1985, p. 91-99.
