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Abstract: The theory of fractals and chaos is one of the newest branches of mathematics and informatics. 
The history of fractals with the publication of Benoit Mandelbrot’s “A theory of the fractals series”. He 
wanted to suggest a group that is much more “irregular” than those considered in classical geometry; 
the more increased it is, the more irregularities become visible. As a definition, the fractals are complex 
geometrical figures generated with the help of a mathematical pattern that has three characteristics: they 
are infinitely complex, have signs of self-similarity and contain areas of orders and of chaos. The 
Mandelbrot Set constitutes a special category of the fractals. 
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1. THE MANDELBROT SET 
 

 To illustrate the distributed calculus the 
fractal that bears the name of Mandelbrot shall 
be used. 
 The fractals [1] are generated with certain 
recursive calculus formulae. For example, the 
best known fractal described by Benoît 
Mandelbrot, is iteratively created with a 
simple formula over the groups of complex 
numbers. 
 A complex number C is formed of two 
components – the real part ReC and the 
imaginary part ImC. The imaginary part is 
multiplied by the constant i, defined as         
i2  = −1.  

   

                       (01) iCImCReC ⋅+=
 The modulus of a complex number is 
defined as being the distance from the point to 
the origin and it is calculated with the formula:  

 ( ) ( ) 2222 yxCImCReC +=+=   (02) 
 An arbitrary point C in the complex plan is 
selected and used in the iterative formula: 
                0

i1

0 =Z

            (03) CZZ 2
n1n +=+

 For the first iteration, it is replaced with Z0, 
which is the origin, it is squared, the constant 
C chosen before is added and we obtain a new 
point Zn+1. This point is again squared; C is 

added again and so on. This is repeated several 
times and the behavior is observed. 
 For example if we selected C +−= , we 
reach a series of values for Z presented in 
Table 1:  

Table 1 
 

n Re(Zn) Im(Zn) | Zn | 
0 0 0 0 
1 -1421 18109 18164.7 
2 4,39E+72 1,33E+73 1,40E+73 
3 -1.#IND -1.#IND -1.#IND 

  
 One can notice that Z tends goes to infinity 
after a very small number of iterations. 
 In fact, the result is predictable, because we 
square and add numbers. Yet, if we try another 
choice for C, for example , we 
obtain the results from Table 2: 

i5.025.0C −=

Table 2 
 

N Re(Zn) Im(Zn) |Zn| 
0 0 0 0 
1 0.472656 -0.6875 0.834302 
2 0.113859 -0.376507 0.393346 
… … …… … 
20 0.440247 -0.66811 0.800118 
21 0.129705 -0.364427 0.386821 
… … … … 
998 0.172002 -0.409976 0.444595 
999 0.602197 -0.72362 0.941417 
1000 0.219192 -0.442107 0.493461 
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 This time Z remains in an interval close to 
the origin, when the same iteration formula is 
applied. If the iteration is executed several 
times one will notice that Z converges to a 
certain point. Thus, Z behaves differently 
depending on the initial selection of C. 
 Further on, we shall apply the iteration 
formula for any point C that is a complex 
number and will color it black if Z converges 
and in white if Z goes to infinity. 
 The result is represented in the Figure 1 
and is in fact the multitude of points from the 
Mandelbrot Set. 

 
Fig. 1 The Mandelbrot Set 

 
2. THE PARALLEL CALCULUS 

 
 Generating the Mandelbrot type fractal 
suits the demonstration of the distributed 
calculus very well, as the associated value of 
each point may be individually calculated. 
 In the sequential algorithm, the duration of 
the execution, with the notation Ts, is 
calculated depending on the size of the input 
data, but the duration of the parallel execution 
(Tp) is the time elapsed since the moment in 
which the parallel program is launched into 
execution until the last processor ends its 
execution. But it is not only the size of the 
input data that influences the duration, so does 
the architecture of the parallel computer and 
the number of processors in the system. 
 Generally, execution times are expressed 
with the aid of the number of elementary 
operations executed, in the least favorable 

case, in order to solve a problem of a given 
size.  
 One of the performance parameters [3] of 
parallel systems is the parallel speed, with the 
notation Sp, which indicates how many times 
the duration of the execution, is reduced when 
the serial execution is switched to the parallel 
one.  

The speed is the ratio between the duration 
of the execution of the best serial program 
executed by a mono-processor computer and 
the duration of the execution of the equivalent 
parallel program executed on a parallel 
calculus system. 

 
p

s
p T

TS =

pSs p

            (04) 

 Theoretically, the parallel speed cannot 
have a greater value than the number of 
processors, p. 
 ≤≤                        (05) 
 A parallel speed equal to the number of 
processors in the system is called linear speed. 
A linear speed where ps =  would be ideal. In 
practice, the speed is sub-linear  (due to 
overhead) possible anomalies such as over-
linear speed where  may also occur. 

ps <

ps >
 To determine the real speed of a parallel 
system for a certain problem, we must 
program and process both the best sequential 
algorithm and the parallel algorithm. One may 
notice that the speed changes its value both 
when the amount of data is changed and when 
the number of processors is changed. 
 The parallel processing is made up of a 
local phase when all the processors process 
data which they were allotted and a global 
phase, when through the participation of all the 
processors the final result or results are 
collected. So speed is a means of reducing the 
execution time.  
 Even in an ideal parallel system, in 
conformity with Amdahl’s law, it is difficult to 
obtain a parallel speed equal to the number of 
processors due to the fact that in the 
framework of any program there is a 
fractionα , which cannot be parallel and must 
be executed sequentially. The remaining 
( α−1 ) steps of the calculus may be processed 
in parallel by the processors in the system. 
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Thus, duration of the parallel execution and 
the parallel speed become: 
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 When  we have: ∞→p
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 That is why the maxim speed that may be 
obtained when a fraction  of the program 
cannot be parallelized is 1/  no matter how 
many processors there are in the system. 

α
α

 For example, if in the case of a system with 
4 processors 20% of a program may not be 
parallelized, the parallel processing time and 
speed will be: 
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 The parallel program will be of 2.5 times 
faster than the sequential one as the parallel 
processing time is 40% of the sequential one. 
 By reducing the fraction of the program 
that can not be parallelized as much as 
possible, a parallel program that can be 
executed as fast as possible can be obtained. 
 The question that rises is whether all p 
processors are used to their full potential. If 
the number of processor in the system 
increases, the efficiency can be maintained at 
the same value by increasing the amount of 
calculus, as a result of a great amount of data 
that needs processing. 
 Thus, the efficiency will be calculated by 
dividing the speed to the number of 
processors, and it is another parameter of 
performance of the parallel system: 

 625.0
4
5.2

p
S

E p
p ===           (10) 

 The efficiency is smaller than, or equal to 1 
and it is 1 in the ideal case when S pp = . In 
fact, it is a relative measure that is used to 
express the penalty paid for the level of 
performance that is achieved. 
 Another question that rises is whether or 
not when we use N times more parallel 
resources, an algorithm would run N times 
faster? NO! The parallel calculus demands, in 
addition to the serial calculus, the 
administration of the parallel process, the 
achievement of communication between them, 
the balancing of the processor charge and even 
the execution of some additional calculations.  
All these operations require a certain amount 
of time, called overhead time; witch is added 
to the time necessary for the parallel execution 
to take place. 
 The overhead time depends on the amount 
of calculus and the number of processor, and 
can be expressed in the form of a function with 
two parameters W and p: 

 ( )
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 Efficiency may be written as: 
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 We shall take W out of the previous 
formula and obtain the expression known as 
the iso-efficiency function of the parallel 
system that shows us how to change W, in 
order to maintain the same efficiency when the 
number of processors in the system is 
increased. 

( ) ( )p,WtpKp,Wtp
E1

E
W overheadoverhead

p

p ⋅⋅=⋅
−

=    (14) 

 Keeping the efficiency constant, the 
increase in the number of processors demands 
the modification of W. 
 The total working time of all the processors 
reflects the cost is defined as the duration of 
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the calculus timed by the number of 
processors, assuming that all the processors 
process the same amount of instructions: 

  count = 0; 
  do 
  {tmp = z.real * z.real - r.imag * z.imag + c.real; 
  z.imag = 2 * z.real * z.imag - c.imag; 

                                            (15) pTC pp ⋅=   z.real = tmp; 
 To obtain highly efficient parallel 
algorithms it is necessary that they meet a 
series of conditions. First the algorithms must 
be achieved in such a way that they use a 
smaller number of processors than the size of 
the problem, especially in the situations where 
there is a necessity to  process a considerable 
amount of data; even more, the algorithm must 
not depend on a certain configuration of the 
parallel processor that will execute it. Second 
the parallel time of execution achieved must 
be as short as possible, as and considerably 
better than the fastest sequential algorithm that 
solves the some problem; generally, we expect 
that the parallel processing time will decrease 
when the number of available processors in the 
system increases. Then the parallel cost has to 
be optimal. The cost of one parallel algorithm 
is the result of the multiplication of the 
processing time by the number of used 
processors. The cost of a parallel algorithm is 
optimal if it is equal to the duration of the 
execution of the optimal sequential algorithm 
that solves the some problem. 

  lengthSq = z.real * z.real + z.imag * z.imag; 
  count++;}  

while (lengthSq < 4.0) && (count < max)); 
  return count;} 
 
Parallel version (static assignment of jobs): 
 
Master code 
for (i=0row=0;i<48;i++,row=row+10) 
send(row,Pi); 
for (i=0; i<(480*640); i++) 
{  recv(c,color,Pany); 
   display(c,color);} 
 
Slave code (we use scaling factors to fit the 

display, i.e. 
dispWidth

realMin-realMax
=scaleReal  

and similar for scaleImg). 
 
recv(row,Pmaster); 
for (x=0; x<dispWidth, x++) 
 for (y=row; y<(row+10), y++) 
 {c.real = minReal + ((float)x * scaleReal); 
  c.imag = minImag + ((float)y * scaleImag); 
  color = calcPixel(c); 
  send(c,color,Pmaster); } 
 

 The maximum speed which may be 

obtained is 5
2.0

1
=  which means that the 

parallel processing time will never be smaller 
than 20% of the sequential one, no matter how 
many processors there are in the system. 

4. CONCLUSION 
 

 Thus, for a parallel program to be executed 
in the quickest mode it is necessary to 
minimize the fraction α , which cannot be 
parallelized by setting an upper limit for the 
parallel speed.  

3. THE PARALLEL ALGORITHM   
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  complex z; 
  float tmp, lengthSq; 
  max = 256; 
  z.real = 0; z.imag = 0; 
 


