
Technical Sciences and Applied Mathematics

 45

PARALLEL PROCESSING AND THE MANDELBROT SET

Carmen PUGHINEANU

“Ştefan cel Mare” University, Suceava, Romania

Abstract: The theory of fractals and chaos is one of the newest branches of mathematics and informatics.
The history of fractals with the publication of Benoit Mandelbrot’s “A theory of the fractals series”. He
wanted to suggest a group that is much more “irregular” than those considered in classical geometry;
the more increased it is, the more irregularities become visible. As a definition, the fractals are complex
geometrical figures generated with the help of a mathematical pattern that has three characteristics: they
are infinitely complex, have signs of self-similarity and contain areas of orders and of chaos. The
Mandelbrot Set constitutes a special category of the fractals.

Key words: efficiency, fractal, iteration, parallel processing, parallel speed.

1. THE MANDELBROT SET

 To illustrate the distributed calculus the
fractal that bears the name of Mandelbrot shall
be used.
 The fractals [1] are generated with certain
recursive calculus formulae. For example, the
best known fractal described by Benoît
Mandelbrot, is iteratively created with a
simple formula over the groups of complex
numbers.
 A complex number C is formed of two
components – the real part ReC and the
imaginary part ImC. The imaginary part is
multiplied by the constant i, defined as
i2 = −1.

 (01) iCImCReC ⋅+=
 The modulus of a complex number is
defined as being the distance from the point to
the origin and it is calculated with the formula:

 () () 2222 yxCImCReC +=+= (02)
 An arbitrary point C in the complex plan is
selected and used in the iterative formula:
 0

i1

0 =Z

 (03) CZZ 2
n1n +=+

 For the first iteration, it is replaced with Z0,
which is the origin, it is squared, the constant
C chosen before is added and we obtain a new
point Zn+1. This point is again squared; C is

added again and so on. This is repeated several
times and the behavior is observed.
 For example if we selected C +−= , we
reach a series of values for Z presented in
Table 1:

Table 1

n Re(Zn) Im(Zn) | Zn |
0 0 0 0
1 -1421 18109 18164.7
2 4,39E+72 1,33E+73 1,40E+73
3 -1.#IND -1.#IND -1.#IND

 One can notice that Z tends goes to infinity
after a very small number of iterations.
 In fact, the result is predictable, because we
square and add numbers. Yet, if we try another
choice for C, for example , we
obtain the results from Table 2:

i5.025.0C −=

Table 2

N Re(Zn) Im(Zn) |Zn|
0 0 0 0
1 0.472656 -0.6875 0.834302
2 0.113859 -0.376507 0.393346
… … …… …
20 0.440247 -0.66811 0.800118
21 0.129705 -0.364427 0.386821
… … … …
998 0.172002 -0.409976 0.444595
999 0.602197 -0.72362 0.941417
1000 0.219192 -0.442107 0.493461

 Parallel Processing and the Mandelbrot Set

 46

 This time Z remains in an interval close to
the origin, when the same iteration formula is
applied. If the iteration is executed several
times one will notice that Z converges to a
certain point. Thus, Z behaves differently
depending on the initial selection of C.
 Further on, we shall apply the iteration
formula for any point C that is a complex
number and will color it black if Z converges
and in white if Z goes to infinity.
 The result is represented in the Figure 1
and is in fact the multitude of points from the
Mandelbrot Set.

Fig. 1 The Mandelbrot Set

2. THE PARALLEL CALCULUS

 Generating the Mandelbrot type fractal
suits the demonstration of the distributed
calculus very well, as the associated value of
each point may be individually calculated.
 In the sequential algorithm, the duration of
the execution, with the notation Ts, is
calculated depending on the size of the input
data, but the duration of the parallel execution
(Tp) is the time elapsed since the moment in
which the parallel program is launched into
execution until the last processor ends its
execution. But it is not only the size of the
input data that influences the duration, so does
the architecture of the parallel computer and
the number of processors in the system.
 Generally, execution times are expressed
with the aid of the number of elementary
operations executed, in the least favorable

case, in order to solve a problem of a given
size.
 One of the performance parameters [3] of
parallel systems is the parallel speed, with the
notation Sp, which indicates how many times
the duration of the execution, is reduced when
the serial execution is switched to the parallel
one.

The speed is the ratio between the duration
of the execution of the best serial program
executed by a mono-processor computer and
the duration of the execution of the equivalent
parallel program executed on a parallel
calculus system.

p

s
p T

TS =

pSs p

 (04)

 Theoretically, the parallel speed cannot
have a greater value than the number of
processors, p.
 ≤≤ (05)
 A parallel speed equal to the number of
processors in the system is called linear speed.
A linear speed where ps = would be ideal. In
practice, the speed is sub-linear (due to
overhead) possible anomalies such as over-
linear speed where may also occur.

ps <

ps >
 To determine the real speed of a parallel
system for a certain problem, we must
program and process both the best sequential
algorithm and the parallel algorithm. One may
notice that the speed changes its value both
when the amount of data is changed and when
the number of processors is changed.
 The parallel processing is made up of a
local phase when all the processors process
data which they were allotted and a global
phase, when through the participation of all the
processors the final result or results are
collected. So speed is a means of reducing the
execution time.
 Even in an ideal parallel system, in
conformity with Amdahl’s law, it is difficult to
obtain a parallel speed equal to the number of
processors due to the fact that in the
framework of any program there is a
fractionα , which cannot be parallel and must
be executed sequentially. The remaining
(α−1) steps of the calculus may be processed
in parallel by the processors in the system.

Technical Sciences and Applied Mathematics

 47

Thus, duration of the parallel execution and
the parallel speed become:

p

)1(TTT s
sp

α−
+α⋅= (06)

1)1p(
1

p
1
1

p
)1(TT

T
T
TS

s
s

s

p

s
p

+−α
=

α−
+α

=

=
α−

+α⋅
==

 (07)

 When we have: ∞→p

α

=
∞→

1Slim p
p

 (08)

 That is why the maxim speed that may be
obtained when a fraction of the program
cannot be parallelized is 1/ no matter how
many processors there are in the system.

α
α

 For example, if in the case of a system with
4 processors 20% of a program may not be
parallelized, the parallel processing time and
speed will be:

5.2
4.0

1
T4.0

TS

T4.0
4
8.0T2.0T

4
2.01T2.0TT

s

s
p

sss

ssp

==
⋅

=

⋅=⋅+⋅=

=
−

⋅+⋅=

 (09)

 The parallel program will be of 2.5 times
faster than the sequential one as the parallel
processing time is 40% of the sequential one.
 By reducing the fraction of the program
that can not be parallelized as much as
possible, a parallel program that can be
executed as fast as possible can be obtained.
 The question that rises is whether all p
processors are used to their full potential. If
the number of processor in the system
increases, the efficiency can be maintained at
the same value by increasing the amount of
calculus, as a result of a great amount of data
that needs processing.
 Thus, the efficiency will be calculated by
dividing the speed to the number of
processors, and it is another parameter of
performance of the parallel system:

 625.0
4
5.2

p
S

E p
p === (10)

 The efficiency is smaller than, or equal to 1
and it is 1 in the ideal case when S pp = . In
fact, it is a relative measure that is used to
express the penalty paid for the level of
performance that is achieved.
 Another question that rises is whether or
not when we use N times more parallel
resources, an algorithm would run N times
faster? NO! The parallel calculus demands, in
addition to the serial calculus, the
administration of the parallel process, the
achievement of communication between them,
the balancing of the processor charge and even
the execution of some additional calculations.
All these operations require a certain amount
of time, called overhead time; witch is added
to the time necessary for the parallel execution
to take place.
 The overhead time depends on the amount
of calculus and the number of processor, and
can be expressed in the form of a function with
two parameters W and p:

 ()
p
WTp,Wt poverhead −=

()

 (11)

p
Wp,WtT overheadp += (12)

 Efficiency may be written as:

()

() ()
W

p,Wtp1

1
Wp,Wtp

W
p

p
Wp,Wt

W

p
p
S

E

overheadoverhead

overhead
p

p

+
=

+
=

=
+

==
 (13)

 We shall take W out of the previous
formula and obtain the expression known as
the iso-efficiency function of the parallel
system that shows us how to change W, in
order to maintain the same efficiency when the
number of processors in the system is
increased.

() ()p,WtpKp,Wtp
E1

E
W overheadoverhead

p

p ⋅⋅=⋅
−

= (14)

 Keeping the efficiency constant, the
increase in the number of processors demands
the modification of W.
 The total working time of all the processors
reflects the cost is defined as the duration of

 Parallel Processing and the Mandelbrot Set

 48

the calculus timed by the number of
processors, assuming that all the processors
process the same amount of instructions:

 count = 0;
 do
 {tmp = z.real * z.real - r.imag * z.imag + c.real;
 z.imag = 2 * z.real * z.imag - c.imag;

 (15) pTC pp ⋅= z.real = tmp;
 To obtain highly efficient parallel
algorithms it is necessary that they meet a
series of conditions. First the algorithms must
be achieved in such a way that they use a
smaller number of processors than the size of
the problem, especially in the situations where
there is a necessity to process a considerable
amount of data; even more, the algorithm must
not depend on a certain configuration of the
parallel processor that will execute it. Second
the parallel time of execution achieved must
be as short as possible, as and considerably
better than the fastest sequential algorithm that
solves the some problem; generally, we expect
that the parallel processing time will decrease
when the number of available processors in the
system increases. Then the parallel cost has to
be optimal. The cost of one parallel algorithm
is the result of the multiplication of the
processing time by the number of used
processors. The cost of a parallel algorithm is
optimal if it is equal to the duration of the
execution of the optimal sequential algorithm
that solves the some problem.

 lengthSq = z.real * z.real + z.imag * z.imag;
 count++;}

while (lengthSq < 4.0) && (count < max));
 return count;}

Parallel version (static assignment of jobs):

Master code
for (i=0row=0;i<48;i++,row=row+10)
send(row,Pi);
for (i=0; i<(480*640); i++)
{ recv(c,color,Pany);
 display(c,color);}

Slave code (we use scaling factors to fit the

display, i.e.
dispWidth

realMin-realMax
=scaleReal

and similar for scaleImg).

recv(row,Pmaster);
for (x=0; x<dispWidth, x++)
 for (y=row; y<(row+10), y++)
 {c.real = minReal + ((float)x * scaleReal);
 c.imag = minImag + ((float)y * scaleImag);
 color = calcPixel(c);
 send(c,color,Pmaster); }

 The maximum speed which may be

obtained is 5
2.0

1
= which means that the

parallel processing time will never be smaller
than 20% of the sequential one, no matter how
many processors there are in the system.

4. CONCLUSION

 Thus, for a parallel program to be executed
in the quickest mode it is necessary to
minimize the fraction α , which cannot be
parallelized by setting an upper limit for the
parallel speed.

3. THE PARALLEL ALGORITHM
 REFERENCES

 The parallel calculus technique [2] being
more practical the working time is reduced by
distributing the charge to several processors.

1. Mandelbrot, B., Fractals: Form, Chance

and Dimension, W.H. Freeman & Co.,
1977;

structure complex {float real; float imag;} 2. Foster, I., Designing and Building Parallel
Programs, Addison Wesley, 1995; int calcPixel(complex c)

{int count, max; 3. Grigoraş, D., Calculul Paralel: De la
sisteme la programarea aplicaţiilor,
Computer Libris Agora, 2000.

 complex z;
 float tmp, lengthSq;
 max = 256;
 z.real = 0; z.imag = 0;

