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Abstract: This study analysis the methods of utilizing a Discrete Fourier Transform in numerical 
processing of radiolocation signals through introducing fast calculation specific algorithms. 
Signal processing in modern radars is realized by using both general algorithms and specific algorithms 
depending on high – base survey signals, i.e. linear modulation frequency impulse, utilizing signal 
numerical processors. The survey signals and those reflected from targets are all analogical signals. In 
order to be numerically processed, the Fourier transform is employed, so that the reflected analogical 
signal is replaced by a finite number of samples, processed at discrete moments. 
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1. INTRODUCTION 
 
Nowadays the high – resolution modern 

radiolocation requires numerical processing of 
signals [1]. 

This is based on using the Discrete Fourier 
Transform ( DFT ), the discrete correlation 
and discrete convolution that helped in 
introducing fast calculation algorithms. 

For this, there have been realized specific 
algorithms to radiolocation in order to 
eliminate human operations that produce 
considerable delays. This has been possible 
through using high – base survey impulses 
with linear modulation frequency and hi – fi 
signal processors. 

A method of increasing the resolution 
utilized in modern radars is the “fast numerical 
convolution”. 

In practical applications, analysis and 
numerical processing of signals are realized 
through introducing fast calculation algorithms 
for Discrete Fourier Transform, named Fast 
Fourier Transform ( FFT ) algorithms, as well 
as for correlation and discrete convolution, and 
they have constituted a great step forward. 

Utilizing those fast calculation algorithms 
on the background of a fast increase of 
numerical signal processors’ performances, 
has allowed that analysis and numerical 
processing to be made in real time for signals 
of higher and higher frequencies [6]. 

In the case of radar systems signals, 
starting from general usage algorithms, 
specific algorithms have been elaborated for 
real – time processing of this class of signals. 

The most important algorithms [7] in this 
category are as follows:  
- algorithms for adapted numerical filtering of 
high-base reflected signals; 
- algorithms for automatic discovery of targets 
on a background of unintentional perturbations 
or intentional jamming; 
- algorithms for dynamic calculation of 
threshold limit, used in the automatic 
discovery process for maintaining constant a 
false alarm value; 
- algorithms for automatic determination of 
spatial coordinates and, based on those, of the 
main movement parameters for the discovered 
targets; 
- algorithms for automatic selection of mobile 
targets on the background of reverberations 
from fixed targets and passive jamming; 
- algorithms for radar protection against 
various sorts of jamming; 
- algorithms for automatic following of mobile 
targets; 
- algorithms for automatic classification of the 
discovered targets. 

In modern radars, all the general 
algorithms and some of the specific signal 
processing algorithms process high – base 
survey signals like the Linear Modulation 
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Frequency ( LMF ) impulse [4]. 
The most prevalent practical application of 

those algorithms is the use of signal numerical 
processors, in fact micro – processors with 
high calculation capacity and a limited number 
of instructions. 

Any signal processing requires a small 
number of simple arithmetical operations that 
repeat and that follow the next sequences 
(steps): 
- reading a number from the operative 
memory; 
- multiplying this with another number; 
- adding the multiplication result with another 
number available from a working registry; 
- writing the final result in the operative 
memory [5].  

 
2. USING THE  FAST FOURIER 
TRANSFORM IN NUMERICAL 

PROCESSING OF RADIOLOCATION 
SIGNALS 

 
In all radiolocation systems the survey 

signals and those reflected from targets are all 
considered analogical signals [2]. 

In order to be numerically processed, the 
Fourier transform is employed, so that the 
reflected analogical signal, of margined 
support x(t), is replaced with a finite number 
of samples N, and processed at discrete 
moments nT. Therefore, a discrete sequence 
x(nT) is formed, where T represents the time – 
sampler discreteness interval, called the 
“sampling period”. 

In keeping with the theory of sampling, for 
this replacement to be performed without loss 
of information, two conditions must be 
simultaneously fulfilled [3]. 

Firstly, the analogical signal spectrum 
must be of margined support: 

 

( ) 0fX = ; Mff >                                    (1) 
 

where fM represents the maximum frequency 
within the analogical signal spectrum. 
Otherwise, the frequency limitation of the 
spectral function X(f) is done through “cross 
down” filtering of the x(t) signal. 

Secondly, the period of the sampler must 
fulfill the Nyquist condition: 

N2f
1T ≤                                                  (2) 

If considering a discrete periodical signal 
x(nT), of NT period, its DFT is defined as 
being the sequence of values x(kF), periodical, 
of an NF period that is given by the relation: 
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The measure F represents the frequency 
discreteness interval of the spectral function, 
determined by relation (5), and it depends on 
the maximum frequency of this spectral 
function. 

Relation (3) makes it possible to determine 
the discrete spectrum suitable for a limited 
duration discrete signal. 

Discrete Fourier Transform Inverse of the 
x(kF) sequence is by definition the sequence 
of values given by the relation: 
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The above relation allows deducing the 
wave shape whenever its discrete spectral 
function is known. 

The discreteness in N points of the spectral 
function involves a frequency sampling 
interval equal to: 

N
2fF M=                                                   (5) 

In case the Nyquist relation (2) is fulfilled 
just on the line: 

 

M2f
1T =                                                  (6) 

 

then, from expression (5) the final value for 
the frequency discreteness interval can be 
deducted: 
 

T N
1F =                                                   (7) 

 

In the above relation, T0 = NT represents 
the discrete sequence duration x(nT), formed 
of N samples. 

The spectral functions of limited duration 
signals are not of margined support. Because 
of that, they have to be limited by using 
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spectral windows with margined support. 
Relation (6) shows that the resolution of 

discreteness operation in time for analogical 
signal is the higher as the maximum frequency 
fM, with its spectral function X(f) undertaking 
limitation, has a higher value. 

By employing the DFT algorithm, it can be 
assured discrete approximation of a Fourier 
transform for analogical signal, by covering 
the following stages: 
- it is chosen an analogical signal x(t) with a 
finite duration T0, having a spectral function 
X(f) of margined support; 

- through its sampling with the period 
N
TT 0=  

the sequence x(nT) that contains N values is 
obtained; 
- the following relation is used: 
 

( ) ( )[ nTx TkFx Da F= ]                             (8) 
 

for obtaining a discrete spectral function 
X(kF); 
- using Discrete Fourier Transform (DFT) 
inverse, there can be obtained N samples     
of the discrete signal x(nT) from the N 
samples of the approximate spectral function, 
according to the relation: 
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However, the spectral analysis of analog 
signals by using the DFT triggers a series of 
errors. 

By adequately choosing resolution T in the 
time domain dependent on fN, or resolution in 
the frequency domain F dependent on T0,     
a precisely enough calculation can be 
guaranteed. 

   

If in the definition relations (3) and (4) of 
DFT direct and, respectively, inverse, the 
following substitution is used: 

 

N
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and for simplification, the sequences x(nT) 
and X(kF) are replaced with sequences x(n) 
and X(k), the final expressions of direct and 
inverse DFT become: 
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If in the relation (11) the amount shown in 
the right member is explicitly written, it can be 
observed that for obtaining a single term of the 
discrete spectral function: 
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there are performed a total of N multiplications 
and N − 1 additions in complex. 

For values of ×1000 – class for N, useful in 
various numerical signal processing practical 
applications, unacceptably large values for N2 
do result. 

Determining the N terms of DFT direct 
involves N2 multiplications and, respectively, 
N(N–1) additions in complex, of ×10002–
class. 

In order to reduce the amount of 
calculations to an allowable level, special 
algorithms are elaborated and utilized, known 
as the Fast Fourier Transform. 

For fast – calculating the Discrete Fourier 
Transform, the classic algorithm named Fast 
Fourier Transform with time decimation is 
employed. 

The time – decimation of a temporal 
numerical sequence requires a reordering 
process of the sequence terms according to a 
certain ordering criteria, defined to begin with. 

The temporal sequence x(n) with                
n = 0, 1,....N–1 and N = 2M, which separates 
the samples with an even index from those 
with an odd index: 

 

x1(n) = x(2n) ;  n = 0,1,....N/2-1 
 

x2(n) = x(2n+1)                                      (14) 
 

Through separating even and odd 
sequences, the following relations occur: 
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The above expressions represent the 
essence of the RFT algorithm with time-
decimation. 
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The first stage of decimation for an initial 
sequence allows the determining of a DFT in 
N points through combining two DFTs in N/2 
points. 

If the spectral functions x1(k) and x2(k) are 
known, for determining the spectral function 
x(k) there is required a total of N 
multiplications and, respectively, N additions 
in complex.  

It is, therefore, favorable that the product 
 to be calculated only once for each 

k, and the result to be used in both relations, 
thus ensuring the reduction of multiplications 
number down to the N/2 value. 

( )kXW 0
k

N
−

In the second stage of division, spectral 
functions X1(k) and X2(k) in N/2 points, are 
each calculated by combining two DFTs each 
in N/4 points. 

If the four DFTs are supposedly known, 
and this stage necessitates also N/2 
multiplications and N additions in complex, 
then the successive division by two of the 
sequences is repeated m times. 

The last stage of division determines     
a number of N/2 DFTs, in two points,          
and necessitates the same number of 
multiplications and additions as the previous 
stages.  

    

As a result, for calculating a DFT in          
N = 2m points, through the FFT algorithm with 
time – decimation, the following operations in 
complex are required: 
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For larger values of N, the above relation 
provides a considerable reduction in the 
amount of initial calculations. 

Figure 1 represents the graph for an FFT 
algorithm with time decimation for calculating 
a DFT in N = 8 points. 

Each arrow corresponds with a 
multiplication operation of signal from the 
angle side’s origin with the specified term 
besides the arrow, and each node corresponds 
to an addition operation of convergent signals 
in the same node. 

 

 
 

Fig. 1 FFT algorithm with time decimation for 
calculating DFT in N = 8 points graph 

 
This graph allows to be determined the 

modifications undertaken by partial and final 
results of the FFT algorithm when the input 
sequence moves with only one pattern or one 
pitch. This situation occurs when it is 
performed the DFT calculation of successive 
sequences within signals that partially overlap, 
which is often met in practice. 

In figure 2 is represented the simplified 
graph of FFT in eight points, when the input 
sequence displaces with one pitch. 

 

 
 

Fig. 2 FFT with displacement in 8 points graph 
 

Consequently, the total amount of 
calculation for FFT with displacement, noted 
FFTD, is: 

 

Nx = 2m − 1 = N − 1;  N = 2m 
 

N+ = 2(2m − 1) = 2(N − 1)                   (17) 
 

By using the relations (16) and (17), it can 
be deduced how many times is the necessary 
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amount for FFT bigger, as against the amount 
of calculations of FFT with displacement 
(FFTD): 

 

( ) 4m    ;
2
m

1N2
N

N
N

N
N m

TFRD

TFR

TFRD
x

TFR
x >=

−
==

+

+          (18) 
 

For larger values of m, reducing the 
amount of calculations arisen from relation 
(18) is considerable: for example, when          
N = 1024 for which m = 10, FFTD requires a 
five times less number of operations in 
complex toward FFT. 

In the case that the input sequence 
displaces two or more steps, relation (18) does 
not remain valid any longer. 

Reducing the amount of calculations 
obtained by using the mono-dimensional 
FFTD becomes insignificant. 

Eliminating this disadvantage of FFT with 
displacement can be realized by using bi- 
dimensional FFT algorithms. Those algorithms 
are based on transforming the mono-
dimensional input sequence x(n), containing  
N = 2m terms, into a bi-dimensional table with 
N1 rows and N2 columns. 

The number of rows and columns of the bi-
dimensional table must be exponents of 2: 

 

N = 2m = 2p+r; N1 = 2p    N2 = 2r             (19) 
 

A similar table can be obtained by 
fragmenting the initial sequence x(n) in N2 
subsequences considered in natural order, each 
having N1 terms. 

The N2 subsequences thus obtained form 
the columns of the bi-dimensional table. 

The table can be realized by using the 
following variable changes: 

 

N = n' + N1n";   n' = 0, 1, … N1 − 1  
  

                         n" = 0, 1, … N2 − 1 
 

k = N2k' + k";    k ' = 0, 1, … N1 − 1 
 

                         k" = 0, 1, … N2 − 1       (20) 
 

DFT  in  N = N1 × N2  points  can  be 
determined by following the next steps: 
- DFT is calculated in N2 points for each of the 
N1 lines of the bi-dimensional table; 
- each of the spectral components is multiplied 
and calculated with the corresponding 
exponentials of WN

-n’k” shape; 
- it is calculated N2 DFT in N1 points. 

Figure 3 represents the bi-dimensional 

method of handling a mono-dimensional DFT, 
for the case of a sequence with N = 32 terms, 
considered a matrix with N1 = 4 lines and        
N2 = 8 columns. 

 

 
 

Fig. 3 Bi-dimensional calculation of a mono-
dimensional DFT 

 
The N1 DFT in N2 points and the N2 DFT 

in N1 points can be calculated using the FFT 
algorithm with time – decimation. 

In this case, using the relation (16) and 
taking into account that the number of lines 
and columns is given by relation (18), the 
volume of calculation of the bi-dimensional 
FFT algorithm can be obtained: 
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21) 

 comparing the relations (21) and (16), 
res

 elements, 
dis

able, the first N2 −1 columns 
oi

n figure 
3, 

ults that for calculating a DFT in N points, 
for the same number of additions, the bi- 
dimensional DFT algorithm requires N 
multiplications moreover against the FFT 
algorithm with time – decimation. 

From the sequence x(n) with N
posed as a bi-dimensional table of N1×N2 

type, a new sequence can be created x'(n) same 
with N elements, arranged as a table with the 
same dimensions. 

In this second t  

ncide with the last Nc 2 − 1 columns of the 
initial table and the N2 column is new. 

For the particular case represented i
replacing the sequence x(n) with sequence 
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x'(n) is equivalent to displacing a step up the 
terms of the subsequences from the entrance of 
each of the N1 = 4 DFT in N2 = 8 points. For 
example, the subsequence x0, x4, x0, .... x20, 
transforms into subsequence x0, x8, x16, .... x32, 
whenever the initial sequence x0, x1, .... x31 is 
replaced with the new sequence x4, x5, .... x35. 

By using the relation (17) it can be 
ded    uced the calculation volume required    
for the bi-dimensional FFT algorithm with 
displacement: 
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                                   (22) 
From the above rela

the fact that, reducing the amount of 

3. CONCLUSION 

In this paper, th  Discrete Fourier 
Tra

ation; 

numerical 
processing of radiolocation signals. The 

( )  2N2pN       1−+=
 

tions it can be deducted 

calculations by using bi-dimensional FFT with 
displacement is the greater the number of 
samples N1 = 2p with which the input sequence 
moves, has more reduced values [3].]

 

 
e

nsform has been introduced, and two FFT 
base algorithms have been analyzed: 
- the FFT algorithm with time – decim
- the FFT bi-dimensional algorithm. 

These constitute the first steps in 

purpose of employing those algorithms is the 
substantial reduction, at an admissible level, of 

the calculation volume (multiplications and 
additions) of DFT and implementation in time 
– domain of adapted numerical filters or 
signals numerical processors [8].  
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