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the state of the art however they are generally 
developed from experimental results in which 
the h/R ratio is close to 1% and are therefore 
inaccurate at higher h/R ratios. The model 
sought in this paper refers to higher h/R ratios, 
since Upper Surface Blown wing designs 
impose it.

Fig. 1. Entrainment lift airfoil using the 
Coanda effect (Drăganb 2012)

2. THE THEORETICAL MODEL

2.1 Banner’s pressure coefficient 
calculation 

The early attempts to mathematically 
describe the Coandã effect relied upon the 

1. INTRODUCTION

The Coandã effect is almost ubicuos to 
aeronautical applications, especially in the 
recent applications which incorporate fluidic 
high lift devices (Guo et al. 2011) Fixed wing 
aircraft are not the only applications, no tail 
rotorcraft also benefit from the use of this effect 
(Cîrciu et al. 2010).

As seen in the literature, most applications 
rely on fluidic pelicular jets blowing tangentially 
to a curve surface to either create lift directly 
(Drăgana 2012) or indirectly, acting as a high 
lift device shown in Fig.1 (Drăganb 2012). 

Due to the ease of use of modern 
computational fluid dynamics methods, 
theoretical development of the Coandã effect 
was all but abandoned in recent years. 

Therefore, the hereby paper seeks to extend 
a theoretical model and establish a frame 
for which it would be useful as a pre-design 
development tool.

Certain semi-empirical models exist in 
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Fig. 2 The basic setup for the current case

The models presented however are crude 
and do not fully describe the physical problem. 
This is one of the reasons for which more 
sophisticated models, such as (Lewinsky and 
Yeh, 1989 ) and Saeed’s semi-empirical model 
(Saeed, 2011), were created.

Although these models are designed to 
compute the velocity flow field around the 
Coandã surface they have many limitations, i.e. 
Saeed’s model only works for small curvature 
radii (h/R <<1). 

An alternative, semi-empirical model, is 
presented in (Draganc, 2012) however, due to 
the availability of the experimental data, it too 
is limited to h/R ratios smaller than or equal to 
ten.

The advantage of the Banner and Roderick 
models is that they work well especially for high 
h/R ratios. This is because the total pressure 
losses across the ramp are less important than in 
the low h/R ratio cases where the flow rapidly 
loses the total pressure. In order to confirm 
this, the hereby paper presents a series of 
computational fluid dynamics tests (CFD).

2.2 The Computational Fluid Dynamics 
comparison. 

As shown by (Bakker, 2005), the 
conventional RANS models based on the 
concept of turbulent viscosity are unable to 

balance between the pressure and centrifugal 
forces exerted on an infinitesimal control 
volume, Fig.2. One of the first theories that dealt 
with the calculation of the average pressure 
coefficient across a circular ramp is given by 
(Banner, 1964). His demonstration considers a 
small volume of the Coandã flow of mass dm. 
For h/R ratios smaller than one, the balance 
between the pressure forces and the centrifugal 
forces acting upon the volume can be expressed 
by equalizing the two equations:
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Where dθ is the infinitesimal angular 
element.

The pressure drop along the jet is then 
expressed by
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by introducing the thrust of an element of 

thickness h
2
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we can write 
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therefore, by defining the pressure 
coefficient 
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we reach the expression
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 Another equivalent demonstration is 
made for thicker jets (where h is comparable 
with the curvature radius R) by (Roderick 
1961).
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Fig. 4 The comparison between the basic 
Banner model and the CFD calculation 

performed with the Reynolds Stress Model 

Fig.5 The pressure distribution across the 
ramp span for different blowing velocities

2.3 The proposed correction functions. 
As seen, the Banner equation predicts quite 

well the pressure drop calculated by the CFD 
RSM method. This coupled with the fact that 
the pressure profile for all blowing velocities 
is quite flat, may be used to develop a new 
mathematical model. 

A quick observation shows that the pressure 
estimates near the slot and near the separation 
point are not correctly calculated by Banner’s 
model. 

In order to improve on the model we must 
then define two correction functions, F1 and 
F2 to describe the pressure behavior in the 
problematic regions.
 It is also worth mentioning that the 
velocity profile near the blowing slot is not 

predict accurate flow separation points due to the 
exacerbated turbulent production. Numerical 
comparative studies (Frunzulicã et al. 2011) 
also shows that the curvature corrections 
brought to the two equation turbulence models 
only mitigate the problem, without providing 
a physically correct model for Coandã flows. 
Therefore a different, more physically sound, 
RANS model was used. The five equation 
Reynolds Stress Model (RSM) is regarded as 
the best RANS viscosity model. It has also been 
confirmed as a tool for the numerical simulation 
of entrainment airfoils (Slomski et al. 2003), 
such as the one presented in Fig.1.

A simple ramp geometry was chosen for the 
2D dp simulation which was discretized using 
a structured mapped mesh presented in Fig.3.

                                           

Fig.3 The computational mesh
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 Figures 6 and 7 shows the correlation 
between the deduced correction functions and 
the results obtained by the CFD numerical 
simulations. Both equations are in good 
agreement with the CFD data.

Fig. 6 The correlation between the F1 
correction function near the blowing slot and 

the CFD simulation results

Fig. 7 The correlation between the F2 
correction function near the separation point 

and the CFD simulation results

 As a measure for the accuracy of the 
proposed method we may define the Coandã 
effect lift efficiency:

C p
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F h 2

sepsin
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                    (12)

where 
L is the absolute value of the lift force 

generated by the Coandã effect
F is the thrust of the blowing jet used

calculated in either Lewinsky’s or Saeed’s 
models, therefore the attempt to describe it is 
unique to this proposed model.
 In order to construct the F1 function we 
must first determine the geometric parameter 
that influences it – so that the equation is 
relative to it rather than an arbitrary length or 
angular position (which would lead to accuracy 
issues).

After studying many geometric cases 
it was concluded that the domain of our 

function spans in the interval 
1800 h

R
θ

π
< < . 

This is also intuitive since the height 
of the slot influences the jet’s boundary layer 
development, (Wygnanski, 2002).
 By using non-linear curve fitting 
methods, we then determined the F1 correction 
for near-slot pressure distribution
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In a similar manner, we observe that the 
domain of the F2 correction function may also 
be linked to a geometric parameter which can 
be calculated individually for each case. It 
appears that the interval for F2 is

[ 0.143 ; 0.143 ]sep sep sep sepθ θ θ θ− ⋅ + ⋅ . 
One way of calculating the angle of flow 

separation is by using the Sleeman-Phelps 
equation (Yen, 1982).

1,54

6.69sep
R
h

θ  =  
    (10)

 Therefore, using the same curve fitting 
techniques, a correction function was derived 
for the second problematic section of the 
Coandã flow:

( )
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