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Abstract: In this paper is presented a new way for computing cepstral coefficients by using linear 
prediction, in a different manner than used into scientific papers. With this new approach we avoid 
truncation errors, at practical level, caused by approximation when we try to calculate MFCC 
coefficients. We can do this the same time like Fourier analyses but with use of a lower amount of 
memory because is not necessary to store any reference vector. The equations used by this new approach 
for calculation of cepstral coefficients (MFCC) can be easily used by a digital signals processor and can 
work together with Levinson-Durbin algorithm for calculation of linear prediction coefficients. The 
advantage of computing cepstral coefficients by linear prediction also comes from the fact that the linear 
prediction equations are differential equations. These equations can also be solved by any classical or 
operational method. 
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1. PRELIMINARY PROCESSING OF 
VOICE SIGNALS 

 
The sound recorded by a microphone is 

sent through an analogue-digital converter in 
order to obtain a signal that can be used for 
digital processing. After some preliminary 
processing phases signal windows (frames) 
result. In each frame is possible to describe 
everything that happens with a vector of 
features, (n numbers). Vectors quantification 
means to allocate a single label  of each 
frame instead of n numbers which result in a 
low amount of memory used. The labels  are 
in fact cepstral coefficients. Inside signal 
windows a stationary vocal signal [2] was 
found and it’s possible to use Fourier analyses 
processing. Let a voice signal and  
a short time signal assigned to signal analysis 
window number m. The short time voice signal 
is: 

ic

ic

ms( )s n ( )n

( ) ( ). ( )m ms n s n w n=             (1) 
where is window function, which is zero 
everywhere except a narrow (in time) region.  

( )mw n

Although the window function can take 
different values for different frames, usually 
the time window is the same for each frame: 

( ) ( )m mw n w m n= −             (2) 
Using both equation result fast Fourier 

transform assigned to number m windows of 
voice signal : ( )s n

( )j
mS e ω = ( ). j n

m
n

s n e ω
∞

−

=−∞
∑  

       = ( ) ( ). j n

n
s n w m n e ω

∞
−

=−∞

−∑           (3)  

This poses all properties of Fourier 
transform known from signals theory. Assume 
that  is periodic signal with period of 
time T, related to window of analysis number 
m. T is also fundamental period (“pitch”) for 

. In this case is known from signal 
theory (see by example [3]) his spectrum is 
described by a sum of Dirac pulses: 

( )ms n

)n(ms

( )j
mS e ω = 2( ).m

k

kS k m
T
πδ

∞

=−∞

⎛ ⎞−⎜
⎝ ⎠

∑ ⎟            (4) 

Because Fourier transform of window 
signal w(n) is: 
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( )j
mW e ω = ( ). j n

n
w n e ω

∞
−

=−∞
∑                         (5) 

Result for , ( )w m n− ( ).j j nW e eω ω− − . 
As a result with the help of property of 

convolution for a window number m where m 
is known, Fourier transform of  
result from frequency convolution as: 

( ). ( )w m n s n−

( )j
mS e ω = 

= ( 2 ) ( 2 )( ). ( ).j nk T j nk T
m

k
S k W e eω ω

∞
− −

=−∞
∑ m        (6) 

which is balanced sum of ( )jW e ω  translated 
on every harmonic with a rectangular window. 
It is well known that human perception of 
voice sound frequency does not follow a linear 
scale. These empirical findings leaded to the 
idea of defining a fundamental subjective 
frequency for pure tones (the sounds of the 
musical scale).    

In this way for every real frequency f 
measured in Hz, one related subjective 
frequency was defined on a nonlinear scale 
named “Mel” after S. Mermelstein that created 
it. Relation between real frequency f and 
subjective Mel frequency f̂  is: 

( )f M f=% = (1125.ln 1 700
f+ )            (7) 

 
2. DETERMINATION OF CEPSTRAL 

COEFFICIENTS MFCC 
 

One of the most prevalent perceptible 
parameterization is represented by Mel 
Frequency Cepstral Coefficients (MFCC) 

C
FM . C

FM  Coefficients are derivate from 
Fourier transform like normal cepstral 
coefficients; the difference consists in 
nonlinear scale used. If, suppose the voice 
signal is continuous in time, split up with 
frequency ef  and noted with k discrete 
frequency related to real frequency  one 
structure is necessary which made 
transformation: 

ekf

{ } ( ){ }ee kfMkf a ,                         (8)  
where M(°) is transformation from equation 
(7). 

Practically, this structure is usually a  
filters bed. If noted with  discrete Fourier 

tran

 ( )S k

sform of  ( )s n  signal results: 

( )S k =
1

2
N

j π
−

−  
0

) n k N

n
e

=
∑  (s n          (9)  

Let f quencies re lf  and hf  minimum and 
maximum (Hz) cover d by f rs bed and N, 
num

e ilte
diber of points where screte Fourier 

transform of ns  is calculated. Central 
frequency of filters bed is calculated with 
relation [2]: 

( )f m = 1 ( ) ( ). ( ) . h l

e 1l
M f M fN M M f m

f
− ⎛

p
⎞−

+⎜ ⎟
⎠
    (10) 

+⎝
where inverse Mel transform can be o
immediately from equation (7): 

btained 

f = ( )1M f−
(

= 700. exp 1
112

f⎛ ⎞⎛ ⎞
−⎜ ⎟⎜⎜ ⎝ ⎠⎝ ⎠

(

    (11) 
5 ⎟ ⎟

The next step in determination of C
FM  

coefficients is calculation of energy logarithm 
fro d: m output of every filter from the filter be

N
mE =

1
2

0
( ) ( )

N

m
k

ln S k H k
−

=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ;  =1,m p      (12) 

Mel frequency cepstrum i verse 
cosine transform of output (in nergy d
of m

s in discrete 
 e omain) 

 filters in bed: 

( )C
FM n =

1

( 12).cos
p

N
m

m

n mE π
=

⎛
p

⎞+
⎜ ⎟
⎝ ⎠

∑ ;  =0, -1n p ; (13) 

Use of bed filters to achieve (11) transform
equations  fast and elegant theor lly and

cally. But in real time implementation it 
tak

 
 is etica  

practi
es long time to obtain inverse or direct 

Fourier transform or inverse cosine transform 
even if rapid Fourier transform is used. Even 
more, in order to achieve rapid implementation 
of Fourier transform tables with predefined 
vectors are made in order to keep in memory 
the values of used exponentials witch lead in a 
large amount of memory used.  In this 
situation is preferred other way to obtain C

FM  
coefficients.   

Starting from an idea showed in [6] to 
calculate C

FM  coefficients with the help  
LPC coefficie

 of
nts we try to develop a new, 

mo
a

 following equation 
is used: 

re efficient algorithm.  
In classic l literature for determination of 

cepstral coefficients starting with linear 
prediction coefficients the
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0
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np

i n
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∞
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− =

⎛ ⎞
⎜ ⎟
⎜ ⎟ =
⎜ ⎟
⎜
⎝

∑ , 

i
i

a z
=

− ⎟
⎠

∑
where is nth real cepstral coefficient. 

If the following transform is used: 
nc

1
1

11 z
zz β
β −+ %

wh

−
− +
=
%

           (14) 

ere β  is a real constant in sub unita
C

ry 
absolute value, the FM  coefficients can be 
determined from L C co fficien

n:

 from the linear prediction ones. 
In order to keep errors of approximation 

used for calculation of  coefficients at 

not

 P e ts using 
equatio  

0 0

L
n C n

n F
n n

c z M z
∞

− −

= =

=∑ ∑ %  

where L is the number of cepstral coefficients 
determined

( )n

n

acceptable level is necessary L >> p, where p 
is prediction filter order. This constraint c

c%

an 
 be used in practical applications. For this 

reason we propose a different approach: 
1. It uses transform (14). 
2. It determines ia%  coefficients of convert 
linear prediction filter with equation: 

1
1

1
p

i
i

i
a z−

=

−∑
=

1
1 i

i
i

a z−

=

−∑ % %

3. It determines C

1
∞                      (15) 

FM  coefficients with 
equation: 

1

1ln
1

∞
⎜ ⎟
⎜ −⎜

= ( )C n
F

i
i

i
a z−

=

⎛ ⎞
⎜ ⎟

⎝ ⎠
∑ % % ⎟

⎟
0n
M n z−  

∞

=
∑

In all these steps the most important thing 
is the presence of symbol "∞" on the right 
hand of equation (15) which allows us to 
obtain a prediction filter transformed by 
infi

oid, at practical level, errors 
cau

nite order.  
This practically translates, on equation (15) 

from which allows us to choose as big order as 
necessary, the same on both sides. It is 
possible to av

sed by approximation in calculation of 
C
FM  coefficients and to achieve the same 

result like in Fourier transform way but in 
short time and with utilization of low memory. 
In order to obtain filtered Mel coefficients 

 the way presented above, the flowing 
equation must be used: 
using

( )
, 0

i
n i pa

=−
% =

( )

( 1)
0

2 ( 1) ( 1)
0 1

( 1)
1

                  ; n=0

(1- )     ; n=1

i
i

i i

i
n

a a
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a

β

β β

β

−
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− −

− ( 1) ( )
1 ;n=2,pi i

n na a−
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⎧ +
⎪⎪ +⎨
⎪
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%

% %

%

; 

( 0 )
0

11
a

=%
%

; 
(0)

n (0)
0

a na
a

=
%

%
%

; n=1,p  

( )C
FM n =

( )
1

1

ln 1                            ; n=0

( ). ;C
j

⎨
−⎪  n=1,p

n

n F n
j

ja M j a
n

−

−
=

⎧
⎪

−
⎩

∑

%

% %
      (16) 

These equations can be easy used by a 
digital signal processor and can work
with Durbin-Levinson algorithm
determination of linear prediction coefficients. 
Th

 together 
 for 

e C
FM  coefficients resulted from equation 

(16) are different than coefficients resulted 
from equation (13). It is well known that the 
spectrum for multiple processes use in practice 
appli n real cepstral coefficients. Below is 
presented a way for real cepstral coefficients 
calculation using LPC linear prediction 
coefficients. Real cepstral coefficients are 
defined by an equation like: 

( )sC

catio

ω = ln ( )S f = ln ( ) ( )V f U f ,         
where ( )S f  is Fourier transform at f 
frequency and ( )U f and ( )V f act at upper 
and lower level of frequency domain 
“quefrenc

calcul
ps are n: 

( y”). 
For ation of real cepstral coefficients 

the following ste  take
1. First of all the following equation is used: 

1

1ln p

1 k
k

k
a z−

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

∑ 1n=
= n

nc z
∞

−∑          (17) 

where  is order n real cepstrum coefficient. 
2. In order to achieve relation of 
between cepstral coefficients and prediction 
coefficients equation (17) is differentiation 

nc
 recurrence 

with respect of 1t z−= and it results: 
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1

1

p
k

k
k

a kt −

=
∑ = 1

1 1
1

p
k k

k k
k k

c kt a t
∞

−

= =

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑ ∑  

After identification of 1nt −  co
resulted from above equation the following 

efficients 

relation of recurrence is resulting: 

nna =
1 1

n k n k n k
k k

nc n a c k− −
= =

+ −∑ ∑  

From result the following difference 
equations: 

1 1n n

ka c
− −

1 1

1

1
1n k n k n

k
c a c a

n −
=

⎛ ⎞= − +⎜ ⎟⎪ ⎝ ⎠⎩
∑
n

c a
k−

⎧
⎪
⎨          (18) 

where  are cepstral coefficients and  are 
linear p ediction coefficients.  new
calculation will be presented in
chapter. Real cepstral coefficients can be 

=

nc
r

 na

 the next 
 A  way for 

conversed into C
FM  coefficients wit

equation. 
 

3. LINEAR PREDICTION ANALYSES 
  

3.1. 

h (7) 

SETTING THE PROBLEM 

e 
e 

nc d ctive 
odin

 
One of the most popular ways for voic

l analyses is based on linear predictivsigna
e o ing well known LPC (Linear Predi

g).  C
Into pure acoustic theory about producing 

voice signal [2] the voice spectrum can be 
approximated by a filter with infinite impulse 
response (IIR), only poles, with a big enough 
number of poles, with transfer function ( )H z : 

( )H z = ( )
( )

S z
GU z

=

1

1

1
p

k
k

k
a z−

=

−∑
         (19) 

or 

( )S z =          (20) 
1

( ) ( )
p

k
k

k
a S z z GU z−

=

+∑
where 
are 

p is the order of LPC analyses and 
coefficients of linear prediction f  

Reverse ter has the transfer fu ctio

ka  
ilter.

 fil n n ( )A z . 

( )A z = ( )
( )S z

=
1

1 k
k

k
a z−

=

−∑          (21) 

By applying inverse “z” transform in equation 
(20), we obtain the difference equation:

GU z

 

)

p

( )s n = −         (22) 
1

( ) (
p

k
k

a s n k e n
=

+∑   

where ( ) ( )e n Gu n=  is error compensation. 
 

 
 
 
 

Fig. 1 LP model of speech 

 
   

A(z) 
 

  G

 u(n)  s

 
 

In Figure 2 it is shown a model of speech 
related to LPC analyses. Speech signal 

together with G signal is applied at input 
f digital filter. Voice generator parameters 

param

(n) 

( )u n
o
are classified by taking into account the 
intensity and duration of speaking sound, gain 

eters and prediction coefficients {ak}. 
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Fig. 2 Voice synthesis using an LPC model 
 

All that parameters are time varying. The 
equations of LPC analyses will be presented in 

ext chapter.  
    

3

of current signal using a linear 

 

  s(n)

  u(n)

n

.2. EQUATIONS OF LPC ANALYSES 
 

Linear predictive coding method is based 
on prediction 
combination of p earlier parts of signal; result 

signal predicted for time n labeled ( )s n% : a

( )s n% =
1

( )
n

k
k

a s n k
=

−∑           (23) 

The prediction error e(n) in this case is 
equal to Gu(n): 

( )e n = s n( ) ( )s n− % =
1

( ) (
n

k
k

)s n s n
=

a k− −∑      (24) 

It is possible to use Fourier analyses   
to estimate 

      
1,( )k k pa
=

 coefficients from       

voice s nal frag nt. Let  
signal fragm

ig me a voice ( )ms n
ent nearby m specimen: 
)m s m n( ) (s n = + .  

This short tim r f prediction related 
to that specimen is: ( ) (me n e m= + . 

e erro o
)n
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The medium root square error of short time 
prediction is: 

     − + 

 +   (26) 

se probability distribution of

mE = 2 ( )m
n

e n∑             (25) 

From (23) and (24) result: 

mE =
2p

s
⎡ ⎤
⎢∑

1
k m

k=
⎥
⎦

 ( ) ( )m
n

n a s n k− −
⎣

∑

     = 2 ( ) 2 ( )m k ms n a s n−∑ ∑ ∑
1

( )
p

m
n k n

s n k
=

1
( )

p

k m
n k

a s n k
=

⎡ ⎤
−⎢ ⎥

⎣ ⎦
∑ ∑

Becau  1,( ka )k p=
 

coefficients is unknown, for estimation of 
those efficients is used m
mean square errors (25). So, for a signal 
the oe
numbers

 co inimizing of root 
( )ms n  
li LPC c fficients are estimated ke 

 which minimizes prediction error 
mE . If partial derivative of error mE  with 

respect to ka  is cancelled:  

0m

k

E
a

∂
∂

= ;  1,k p=           (27) 

result scalar product of specimen vector of 
local prediction error an  vector formed d of  
specimens of signal fragment is zero. For all 
coefficients which minimize prediction error, 
the prediction local error is orthogonal with 
precedent vectors (Fig.3): 

( ) ( ) 0m m
n

e n s n i− =∑ ; 1 i p≤ ≤          (28) 
 

 

 
 

Fig. 3 Orthogonal error prediction 
 

Equation (28) is made by p linear equations 
= 

=

Coefficients of covariant are defined by: 

( ) ( )m m
n

s n s n j−∑

1j n=

( ) ( )a s n i s n j− − ,  1 i p≤ ≤             (29) 
p

j m m∑ ∑

( , )mR i k = ( ) (m m
n

s n i s n j− −∑  )         (30) 

Combining (29) and (30) equations results 

ul Walker equations (see [2]) with 
variables: 
Y e- ia  

1
j m m

j=
( , ) ( ,0)

p

a R i k R i=∑ ;  1,pi =         (3 1) 

Result prediction total error: 
p

ˆ
mE = 2 ( ) ( ) ( )m j m m

n
s n a s n s n j

1j n=

− −∑ ∑ ∑       

1
(0,0) ( )

p

j
j

           = 0,R a R j
=

−∑   

1) is possible 
to tocorrelation, 
covariates or any method used for solving 
differential equations [1]. 

TOCORRELATIO  ME
 

e (m) is zero 
bec no 
prediction error. 

The same thing happens for n > N-1
se sm(n) = 0  for any n > N-1. 

efficients 

        (32) 

In order to solve equation (3
use different methods like au

 
3.3. AU N THOD 

With this method is possible to obtain 
linear prediction coefficients ia  using 
Levinson –Durbin algorithm [2]. 

The following conditions are necessary: 
 

( )s n =
( ). ( );  0 n N-1s m n w n+ ≤ ≤⎧

⎨          (33) m 0                   ;  otherwise.⎩
where w(m) is speaking signal time for 0 ≤ n ≤ 
N-1. 

Result for m < 0 signal error n
ause sm(n) = 0 for any n < 0 and there is 

+p 
becau

According with equation (31) the new 
medium value for prediction error minimum is 

 

mE =
1

2

0
( )

N p

m
n

e n
− +

=
∑                       (34) 

And covariant co ( , )mR i k  are: 
 

     =      (35)  

where: 1

( , )R i k =
1

( ) ( )
N p

s n i s n k
− +

− −∑ = m
0

n m
n=

 1 ( )N i k− − −  
0

( ) ( );m m
n

s n s n i k
=

+ −∑    

i p≤ ≤ ; 0 k p≤ ≤ .   
Because covariant coefficients (m , )R i k  are 

dependable only by i and k independent 
variables re lt: su

 

(m , )R i k = mr ( )i k− =
1 ( )

0
( ) (

N i k

m m
n

s n s n i
− − −

=

+ −∑ )k     (36) 
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And e the autocorrelatio becaus n function is 
eve ons are:

Example: For p = 2 
 n, (- ) ( )m mr k r k= , the LPC equati  

0 (0)rE ;  1 (1) / (0)k r r= ; 
= ;  

=p

k=1
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Because autocorrelation matrix  is a 
Toeplitz matrix (symmetrical and positively 
defined), the system can be resolved using 
Levinson-Du n algorithm

 
Observation

ℜ

rbi .   

 
If  exists, the system can be solved 

wit

ECURRENT

 

 with tocorrelation method using 
Lev

1−ℜ
h 1a r−= ℜ . 
That is the well known covariate method. 

 
3.4. LEVINSON-DURBIN R

ALGORITHM 
 

Prediction coefficients ka can be easily 
found au

inson-Durbin recurrent algorithm: 
P1.   For 1,i p=  
        (0)E r=   0

        ik =

1

1
1

1

( ) ( ) ( )i
j

i

r i a j r i j

E

−
=

−

− −⎜ ⎟
⎝ ⎠

∑
 

P2.   For 1,2,..., 1j i= −  

i−⎛ ⎞

        ( )j ik=  a i
        1 1( ) ( ) ( )i i i ia j a j k a i j− −= − −    
        i

2
1(1 )i iE k E −= −  

2a 1 2 1(1) (1)a k a− = 2 2

(1) (0) (1) (2)
(0) (1)

r r r r
r r

−
−

(1) ; 

1 2 (1)a a= ; 2 2 (2)a a=  
 

Observation 
With found linear prediction coefficients is 

possible to calculate cepstral coefficients using 
differential e ation (18)
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