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Abstract: This paper introduces the notions of a nonlinear connection Γ and of a Γ-linear connection ∇Γ 
on the 1-jet space J1(T,M). A particular nonlinear connection Γ0 and a Berwald Γ0 -linear connection BΓ0 
are produced by a pair of semi-Riemannian metrics. The adapted components of the torsion and 
curvature d-tensors of our Berwald connection are described. 
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1. INTRODUCTION 
 

According to Olver’s opinion expressed in 
the monograph [4] and in some private 
discussions, we emphasize that the 1-jet 
bundle represents the most convenient space of 
configurations for the study of quantum and 
classical field theories.  

For that reason, many researchers studied 
the differential geometry of the 1-jet spaces, in 
the sense of d-connections, d-torsions and d-
curvatures.  

The geometrical approach from this paper 
follows the direction of development of the 
differential geometry of the 1-jet space 

),(1 MTJ  initiated by Asanov [1] and uses the 
geometrical methods from the theory of 
Lagrange spaces developed by Miron and 
Anastasiei [2].  

It is important to note that this geometrical 
approach allows a clear exposition of the 
multi-time physical-mathematical concepts 
studied by Neagu [3] and offers many original 
ideas for the geometric dynamics of a PDEs 
systems, developed by Udrişte [5]. 

2. NONLINEAR CONNECTIONS 
 

Let us consider the jet bundle of first order 
,MT)M,T(J1 ×→  whose local coordinates 
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is called a nonlinear connection on the 1-jet 
bundle )M,T(JE 1= . 

A nonlinear connection Γ  on the 1-jet 
space E produces an adapted basis of vector 
fields:  
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This adapted basis is extremely convenient 
in the study of the differential geometry of 1-
jet spaces because the transformation rules of 
its elements have a simple tensorial form: 
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In this context, the Lie algebra )E(Χ of the 
vector fields on the 1-jet bundle E decomposes 
as the following direct sum: 
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As a consequence, any vector field 
)E(X Χ∈  on the 1-jet space E can be unique 

written in the form:  
 

vXXhXhX MT ++=                             (7) 
 

where ,h T Mh  and v  are the canonical 
projections of the above decomposition of the 
Lie algebra X(E). 

3. Γ-LINEAR CONNECTIONS 

Let Γ  be a nonlinear connection on 
the 1-jet space )M,T(JE 1=  and let 

,h T Mh  and v  be the canonical projections of 
the decomposition of the Lie algebra of vector 
fields ).E(Χ   

By definition, a linear connection:  
 

)E()E()E(: Χ→Χ×Χ∇                         (8) 
 

having the properties 
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is called a Γ -linear connection on the jet 
space of first order E .  

Using the preceding definition, it 
immediately follows that a Γ -linear 
connection ∇  on the jet bundle of first order is 
unique determined by a set of nine local 
functions, denoted by: 
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Using the transformation laws of the 
elements of the adapted basis of vector fields, 
together with the properties of the Γ-linear 
connection ∇, we deduce that the those nine 
adapted components ∇Γ transform after the 
rules: 
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Finally, we point out that for a given Γ -
linear connection ∇ characterized by nine 
adapted components ,Γ∇  we can compute the 
adapted components of its torsion and 
curvature d-tensors. In this direction, some 
strong results from the monograph [3] prove 
that the torsion d-tensor field T of Γ∇  is 
determined by twelve effective adapted 
components, while the curvature d-tensor field 
R of Γ∇  is determined by eighteen effective 
adapted components.  

The expressions of all these effective 
adapted components are locally described in 
[3]. 

 
4. A BERWALD CONNECTION 

 
Let us suppose now that )t(hαβ  and 

),x(ijϕ  where )t(t γ=  and ),x(x k=  are 
semi-Riemannian metrics on the manifolds T 
and M and let us consider that )t(H γ
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ijΓ  are the Christoffel symbols of these 

metrics. Then, taking into account the 
transformation laws of the Christoffel 
symbols, by direct computations, we deduce 
that the pair of local functions       
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represents a nonlinear connection on the 1-jet 
space )M,T(J1 .  

The nonlinear connection 0Γ  is called the 
canonical nonlinear connection produced by 
the metrics )t(hαβ  and )x(ijϕ . 

Moreover, if we study the transformation 
laws of the following set of nine local 
functions, denoted by 
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then we deduce that the adapted components 
0ΓB  represent a 0Γ -linear connection on the 

1-jet space )M,T(J1 .  
The 0Γ -linear connection 0BΓ  is called 

the Berwald connection associated to the 
metrics )t(hαβ  and )x(ijϕ . 

Now, particularizing some general results 
from the work [3], we can conclude that all 
adapted components of the torsion d-tensor T 0  
of our Berwald connection are zero, except:  
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where )t(H γ
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curvature tensors of the metrics )t(hαβ and 
).x(ijϕ   

Also, all adapted components of the 
curvature d-tensor R 0  of our Berwald 
connection are zero, except: 
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5. CONCLUSIONS 

As final remarks, let us note that, in the 
particular case (T,h) = (R,δ), the canonical 
nonlinear connection Γ0 naturally generalizes 

the canonical nonlinear connection produced 
by the spray ,yyG2 kji

jk
i Γ=  while our 

Berwald connection is the natural 
generalization of the classical linear Berwald 
connection from the theory of Lagrange spaces 
[2], which is produced by the nonlinear 
connection .yN ki

jk
i
j Γ=   

In conclusion, the Berwald 0Γ -linear 
connection 0BΓ  is a natural example of Γ -
linear connection, which ensures us that 
our geometrical theory upon the Γ -linear 
connections on 1-jet spaces is a fertile and 
good one. 
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