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Abstract: The UAV flight path design often represents the biggest problem of when it comes to 
the optimization of common meaning, like the minimum energy problem, maneuvers executed the 
fastest way. The problem of flight path optimization requires some predictions to eliminate or to 
minimize the probability of collisions in all possible situations, such as the collision of two or 
more UAVs, a UAV and a manned aircraft, UAVs and static objects, UAVs and flying birds etc. 
The Model Predictive Control (MPC) is one of the best methods to control selected UAV paths. 
The goal of the author is to highlight the mathematical backgrounds concerning the MPC 
problem formulation, based on the receding horizon problem (RHP), and on the Laguerre 
functions method. 
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1. INTRODUCTION 
 

Unmanned aerial vehicles (UAV) are going to be used in wide variety. The recent 
history of UAV applications is awash in informative articles describing brand-new UAV 
applications like urban drone taxis, drones used for sightseeing, rideable by man (hover 
bike) drones used by police forces and military squads. UAV applications in urban areas 
are generating a set of new challenges designers must answer and solve. 

As a first challenge, if the UAV is integrated into national airspace management, is to 
be able to design a flight path ensuring flight safety at the same (or higher) level as 
compared to manned aviation. Due to the limited amount of electrical energy stored into 
the batteries, the flight path of the UAV must be optimized in a few ways; for instance, 
the flight time must be maximized whilst the energy required for a given maneuver has to 
be minimized and the entire flight must be planned. 

The model predictive control may provide solutions for these problems related to 
UAV flight path design famous for optimization with constraints. The optimal control law 
being constrained will steer UAV from the initial equilibrium set point to the next 
equilibrium flight regime minimizing a pre-chosen integral performance index, say, the 
closed loop cost function. 

Basic idea of the MPC can be formulated using receding horizon problem, which is a 
common and widely used formulation in control theory. The competing method to the 
receding horizon problem is the optimal control formulation, which has many advantages 
to those problems solved using RHP. 
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2. RELEVANT REFERENCES AND PRELIMINARIES 
 

The pioneering work of Löfberg deals with MPC design problem formulation and 
with its solution for constrained systems using LMI method [1].  

The early works of Seeborg et al. formulates basic idea of the receding horizon 
problem, and many applications are available to highlight importance of the topic of MPC 
control system design [2, 13]. In [3] preliminary design of the UAV longitudinal 
controller was introduced, in [5] the important topic of the redundancy of the UAV is 
investigated. The UAV spatial motion automation based upon model predictive control in 
different flight scenarios is thoroughly examined in [4]. The evolution of the UAVs is 
deeply analyzed in [7], and its military application in integrated air defense systems is 
examined in [6]. In [8] the MPC is introduced for vehicle control, for traction control, for 
power systems, and for product planning as well. This paper will demonstrate a numerical 
example based on [9], and [10]. The UAV continuous dynamic system MPC design will 
be conducted with pre-chosen design parameters [11, 12]. UAV and UAS innovative 
solutions are deeply examined in [17], and UAV launch system is discussed in [18]. 

 
3. FUNDAMENTALS OF THE MODEL PREDICTIVE CONTROL 

 
The general idea of the MPC and its main objectives have been formulated by 

Seeborg et al. as follows [2]: 
− prevent violations of control input and predicted output constraints; 
− drive process output to their optimal set points maintaining remaining process 

outputs within specified ranges; 
− prevent aggressive changes of the input variables; 
− control maximum number of the process variables when the sensor or the actuator 

are not available in the closed loop control systems. 
The MPC system is very suitable for solution of the constrained MIMO control 

problems, which is typical for many UAV types. The MPC system block diagram can be 
seen in Fig. 1. [4]. 

 
 

FIG. 1. Block Diagram of the MPC. 
 

The process model is used to predict the current values of the output variables. The 
differences called residuals measured between process outputs and model outputs used as 
feedback signal to the prediction block, which is also subjected to the input signals. At 
every sampling time, two types of calculations, namely the set-point calculations and 
control calculations are performed. During either calculation inequality constraints like 
lower and/or upper limits are set upon output variables. 

 

50 



Review of the Air Force Academy                                                                 No.1 (39)/2019 

Control calculations lead to inputs subjected to both process and model paths. The set-
points (targets) are calculated leaning on well-known optimization criteria of the cost 
minimization. Worth to mention, that in industrial applications targets (set-points) are 
calculated using economic optimization procedures of the production rate maximization, 
or, as a rule of the profit maximization. 

The optimum values of the targets will change due to varying process conditions (e.g. 
noises, parameter variations, system uncertainties, changes in inequality bounds, etc.). 
The constraints of the output variables change due to varying process conditions, 
equipment and instrumentation. In MPC systems set-points (targets) are re-calculated 
each time when the control calculations are performed. All two types of the calculations 
are based upon current measurements and the predicted (future) value of the process 
outputs.  

The main goal of the MPC control calculations is to determine the control inputs 
required to drive predicted process outputs to its optimal targets. 
 

4. MATHEMATICAL FORMULATION OF THE RECEDING HORIZON 
CONCEPT 

 
Behind the basic concept of the MPC is the idea of the receding horizon [1, 2, 4, 8, 11, 

12, 13], which is illustrated in Fig. 2. 
 

 
 

FIG. 2. Basic Concept of the MPC. 
 

The MPC problem is mostly formulated for discrete time systems. At any initial 
discrete time of the sampling, say, t=T, the predicted process output is calculated using 
the internal model response. This calculation is performed for the entire range of the of 
the prediction horizon of p. Leaning on process predicted outputs and model outputs at 
time ‘t=T+p’ control effort needed to minimize system error (residuals) is calculated to 
drive process to follow the optimal reference trajectory. First step in this concept is: at 
time ‘t=T+1T’ the calculated control input is executed. At the same time, the process 
output is measured, and compared with the internal model outputs. Based upon the 
residuals (errors) the new predicted future output is calculated for the new horizon of 
‘t=T+2T’, till the discrete time of ‘t=T+p+1’ on the horizon, p.  

This means that prediction horizon keeps to be shifted, at every time, p seconds ahead 
of the current time, t. 
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In spite of being interested in discrete time models, continuous time MPC models 
using orthonormal functions are also interested due to their reduced required computer 
power needed for calculations [4]. 

This article will lean upon continuous time models used to calculate process outputs 
and desired optimal control trajectory.  

However, execution of the algorithm proposed will use discrete time settings that for a 
pre-defined time step the control effort is executed before the next optimization step is 
made [2, 4, 8, 11, 12, 13]. 

 
5. MPC OPTIMAL CONTROL PROBLEM FORMULATION 

 
The MPC problem is formulated for the multivariable dynamic system. The process 

(plant) behavior is described by the following nonlinear equation [2, 4]: 
𝒙̇𝒙 = 𝒇𝒇(𝒙𝒙,𝒖𝒖, 𝑡𝑡)  (1) 

 
The model outputs are calculated up to the horizon time t=p, which represents a 

terminal point of the calculations. Let us set the control objective as: minimize a cost 
function of the form as given below: 
𝑽𝑽(𝒙𝒙,𝒖𝒖, 𝑡𝑡) = ∫ 𝒍𝒍(𝒙𝒙(𝑡𝑡),𝒖𝒖(𝑡𝑡), 𝑡𝑡𝑝𝑝

𝑜𝑜 )𝑑𝑑𝑑𝑑 + 𝑭𝑭�𝒙𝒙(𝑝𝑝)� ,  (2) 
where 𝒍𝒍(𝒙𝒙(𝑡𝑡),𝒖𝒖(𝑡𝑡), 𝑡𝑡) ≥ 0, and 𝑭𝑭�𝒙𝒙(𝑝𝑝)� is the terminal state weighting at t=T+p, and, 
control input 𝑢𝑢(𝑡𝑡) is subjected to some constraint of 𝒖𝒖(𝑡𝑡) ∈ 𝑼𝑼. The formulation of the 
control problem based upon Eqs (1) and (2) is a very general one, and, proper choice of 
functions f, F and l can lead to very common representations of sensible problems. 

Solution of the (2) cost function minimization problem requires solution of the partial 
differential equation formulated below: 
𝜕𝜕
𝜕𝜕𝜕𝜕
𝑽𝑽0(𝒙𝒙, 𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢∈𝑈𝑈𝑯𝑯(𝒙𝒙,𝒖𝒖, 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑽𝑽0(𝒙𝒙, 𝑡𝑡))  (3) 

In Eq (3): 𝑯𝑯(𝒙𝒙,𝒖𝒖,𝜆𝜆) = 𝒍𝒍(𝒙𝒙,𝒖𝒖) + 𝜆𝜆𝒇𝒇(𝒙𝒙,𝒖𝒖) is the Hamiltonian function with the 
boundary condition of 𝑽𝑽(𝒙𝒙,𝒑𝒑) = 𝑭𝑭(𝒙𝒙(𝑝𝑝)), and, 𝜆𝜆 is the Lagrange multiplier. Eq (3) 
represents the well-known Hamilton-Bellman-Jacobi equation. So as to be able to solve 
Eq (3) some assumptions needed and must be introduced. Further we will assume that the 
plant (process) is a linear one so that function f(x(t),u(t),t) will gain special form of: 

𝒙̇𝒙 = 𝑨𝑨(𝑡𝑡)𝒙𝒙(𝑡𝑡) + 𝑩𝑩(𝑡𝑡)𝒖𝒖(𝑡𝑡),  (4) 
which represents the MIMO time varying system state equation [2, 4]. Functions l and F 
will have quadratic form as follows below [2, 4, 13]: 
�𝒍𝒍(𝒙𝒙(𝑡𝑡),𝒖𝒖(𝑡𝑡), 𝑡𝑡) = 𝒙𝒙𝑇𝑇(𝑡𝑡)𝑸𝑸(𝑡𝑡)𝒙𝒙(𝑡𝑡) + 𝒖𝒖𝑇𝑇(𝑡𝑡)𝑹𝑹(𝑡𝑡)𝒖𝒖(𝑡𝑡) 

𝑭𝑭�𝒙𝒙(𝑝𝑝)� = 𝒙𝒙𝑇𝑇(𝑝𝑝)𝑺𝑺(𝑡𝑡)𝒙𝒙(𝑝𝑝) �  (5) 

In eq (5): 𝑸𝑸(𝑡𝑡) ≥ 0, 𝑺𝑺(𝑡𝑡) ≥ 0, 𝑹𝑹(𝑡𝑡) > 0 are square weighting matrices. These 
conditions will drive to a special case when the Hamilton-Bellman-Jacobi equation 
simplifies to the ordinary differential equation (ODE) of Ricatti. 

The Hamilton-Bellman-Jacobi equation also can be solved if to introduce: 

𝑉𝑉0(𝑥𝑥, 𝑡𝑡) = 𝑥𝑥𝑇𝑇(𝑡𝑡)𝑃𝑃(𝑡𝑡)𝑥𝑥(t) ,   𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘  𝑃𝑃(𝑡𝑡) = 𝑃𝑃𝑇𝑇(𝑡𝑡) – cost matrix. (6) 
Then, the Hamilton-Bellman-Jacobi equation may be rewritten as given below: 

�−𝑷̇𝑷(𝑡𝑡) = 𝑷𝑷(𝑡𝑡)𝑨𝑨(𝑡𝑡) + 𝑨𝑨𝑇𝑇(𝑡𝑡)𝑷𝑷(𝑡𝑡) + 𝑸𝑸(𝑡𝑡) − 𝑷𝑷(𝑡𝑡)𝑩𝑩(𝑡𝑡)𝑹𝑹−1(𝑡𝑡)𝑩𝑩𝑇𝑇(𝑡𝑡)𝑷𝑷(𝑡𝑡) 
𝑷𝑷(𝑝𝑝) = 𝑺𝑺

�  (7) 
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Eq (7) can be solved and it leads to a linear time-varying feedback control law: 
𝒖𝒖(𝑡𝑡) = 𝑭𝑭(𝑡𝑡)𝒙𝒙(𝑡𝑡),   (8) 

where F(t) stands for the state feedback gain matrix, depending on 𝑷𝑷(𝑡𝑡), which is the 
solution of the Ricatti equation (7): 
𝑭𝑭(𝑡𝑡) = 𝑹𝑹−1(𝑡𝑡)𝑩𝑩𝑇𝑇(𝑡𝑡)𝑷𝑷(𝑡𝑡)   (9) 

Difficulties related to solution of Eq (7) can be eliminated using candidate method of 
using orthonormal functions for continuous time MPC design. 
 

6. CONTINUOUS TIME MPC DESIGN BASED ON ORTHONORMAL 
FUNCTIONS 

 
The design technique based on orthonormal functions and presented by [2, 4] can be 

used as an alternative one to the classical receding horizon control solution requiring 
solution of the Ricatti ODE. Future prediction is calculated in an analytical form, the 
required control trajectory is calculated using a pre-chosen set of orthonormal basis 
functions. This technique basically has been developed for the continuous time systems, 
however, it can be extended to the discrete time systems, and, expected to be extended to 
nonlinear systems, too. In [4] Laguerre orthonormal functions are used and proposed to 
reduce complexity of the performance specification process. The uniqueness of this 
procedure is that problem of finding optimal control signals required is turned into the 
finding a set of coefficients for the Laguerre model. This technique reduces the number of 
required parameters in the calculations, and, has important advantage when it is used in 
on-line environment. 

6.1 Defining control trajectory. It is well-known that any arbitrary function f(t) can 
be expanded into formal expansion analogue to that of the Fourier expansion. Any 
arbitrary function f(t) can be expressed in the following series expansion: 

𝑓𝑓(𝑡𝑡) = ∑ 𝜉𝜉𝑖𝑖  𝑙𝑙𝑖𝑖(𝑡𝑡)∞
𝑖𝑖=1  , i=1,2,3 … (10) 

where 𝜉𝜉𝑖𝑖  are coefficients of the orthonormal functions 𝑙𝑙𝑖𝑖(𝑡𝑡) satisfying following 
conditions: 

∫ 𝑙𝑙𝑖𝑖2(𝑡𝑡)∞
0 𝑑𝑑𝑑𝑑 = 1; ∫ 𝑙𝑙𝑖𝑖(𝑡𝑡)

∞
0 𝑙𝑙𝑗𝑗 (𝑡𝑡)𝑑𝑑𝑑𝑑 = 0;   ∀𝑖𝑖 ≠ 𝑗𝑗   (11) 

Secondly, assuming that f(t) represents a piece-wise continuous function satisfying 

∫ 𝑓𝑓2(𝑡𝑡)∞
0 𝑑𝑑𝑑𝑑 < ∞, (12) 

then for any 𝜀𝜀 > 0 over the time range of 0 ≤ 𝑡𝑡 ≤ ∞ there is an existing finite integer of 
N such that for all 𝑘𝑘 ≥ 𝑁𝑁 

∫ (𝑓𝑓(𝑡𝑡) − ∑ 𝜉𝜉𝑖𝑖  𝑙𝑙𝑖𝑖(𝑡𝑡)𝑘𝑘
𝑖𝑖=1 )2∞

0 𝑑𝑑𝑑𝑑 < 𝜀𝜀  (13) 

In other words, the truncated expansion of ∑ 𝜉𝜉𝑖𝑖  𝑙𝑙𝑖𝑖(𝑡𝑡)𝑁𝑁
𝑖𝑖=1  is used to closely approximate 

any arbitrary function f(t). One famous set of the orthonormal functions used frequently is 
a set of the Laguerre functions important to engineers because of simple Laplace 
transforms of the 𝑙𝑙𝑖𝑖(𝑡𝑡), i.e.: 

∫  𝑙𝑙𝑖𝑖(𝑡𝑡)𝑒𝑒−𝑠𝑠𝑠𝑠
∞

0 𝑑𝑑𝑑𝑑 = �2𝑝𝑝 (𝑠𝑠−𝑝𝑝)𝑖𝑖−1

(𝑠𝑠+𝑝𝑝)𝑖𝑖
,  (14) 

In Eq (14) 𝑝𝑝 > 0 and called scaling factor. From Eq (14) a differential equation satisfying 
Laguerre functions can be derived. Let: 
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�𝑳𝑳(𝑡𝑡) = [𝑙𝑙1(𝑡𝑡) 𝑙𝑙2(𝑡𝑡) ⋯ 𝑙𝑙𝑁𝑁(𝑡𝑡)]𝑇𝑇

𝑳𝑳(0) = �2𝑝𝑝[1 1 ⋯ 1]𝑇𝑇
�  (15) 

The Laguerre functions will satisfy the differential equation given below: 

𝑳̇𝑳(𝑡𝑡) = 𝑨𝑨𝑝𝑝𝑳𝑳(𝑡𝑡); 𝑨𝑨𝑝𝑝 = �

−𝑝𝑝 0 ⋯ 0
−2𝑝𝑝 −𝑝𝑝 ⋯ 0
⋮

−2𝑝𝑝
…
…

⋱ ⋮
−2𝑝𝑝 −𝑝𝑝

� (16) 

 
The solution of the differential equation (16) represents the Laguerre functions in the 

following matrix exponential function: 

𝑳𝑳(𝑡𝑡) = 𝑒𝑒𝑨𝑨𝑝𝑝 𝑡𝑡𝑳𝑳(0)  (17) 
For LTI systems when the closed loop control system is the stable one, after the 

transient response period the control signal calculated for the given set-point will 
exponentially converge to a given constant. Leaning on this, in the receding horizon 
control design problem solution the future control input signal calculated for each moving 
window will be invariant one, in other words, 𝒖̇𝒖(𝑡𝑡) = 0 for each horizon window of 
𝑇𝑇𝑖𝑖 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝑖𝑖 + 𝑝𝑝. Easy to see that: 

∫ 𝒖̇𝒖2(𝑡𝑡)𝑑𝑑𝑑𝑑𝑇𝑇𝑖𝑖+𝑝𝑝
𝑇𝑇𝑖𝑖

< ∞   (18) 
The derivative of the future control input signal can be determined using following 

Laguerre function representing series expansion as given below: 

𝒖̇𝒖(𝑡𝑡) = ∑ 𝜉𝜉𝑖𝑖  𝑙𝑙𝑖𝑖(𝑡𝑡)∞
𝑖𝑖=1 = 𝑳𝑳𝑇𝑇(𝑡𝑡)𝜼𝜼   (19) 

In Eq (19): 𝜼𝜼 = [𝜉𝜉1 𝜉𝜉2 ⋯ 𝜉𝜉𝑁𝑁]𝑇𝑇 column vector of the coefficients of the 
orthonormal functions 𝑙𝑙𝑖𝑖(𝑡𝑡) used to express expansion of 𝒖̇𝒖(𝑡𝑡). 

6.2 Predicted process (plant) output. The dynamic plant to be controlled is assumed 
to be a MIMO system with control inputs u(t) of dimension r, and outputs y(t) of the 
dimension of q. 

To gain realistic environment in which MPC control problem is being solved, the 
plant is subjected to external disturbances w(t) (e.g. atmospheric turbulences, air 
temperature changes, air density changes, air pressure changes etc.), and measurement 
process is a noisy one, outputs are disturbed with sensor noises n(t). 

It is supposed that 𝒘̇𝒘(𝑡𝑡) and 𝒏̇𝒏(𝑡𝑡) are continuous time uncorrelated white noise 
processes with zero means, thus we have [4]: 

𝐸𝐸 �𝑑𝑑𝒘𝒘(𝑡𝑡)
𝑑𝑑𝑑𝑑

� = 0 ;  𝐸𝐸 �𝑑𝑑𝒏𝒏(𝑡𝑡)
𝑑𝑑𝑑𝑑

� = 0; 

𝐸𝐸 �𝑑𝑑𝒘𝒘(𝑡𝑡)
𝑑𝑑𝑑𝑑

𝑑𝑑𝒘𝒘𝑇𝑇(𝜏𝜏)
𝑑𝑑𝑑𝑑

� = 𝑊𝑊𝑤𝑤𝛿𝛿(𝑡𝑡 − 𝜏𝜏);  𝐸𝐸 �𝑑𝑑𝒏𝒏(𝑡𝑡)
𝑑𝑑𝑑𝑑

𝑑𝑑𝒏𝒏𝑇𝑇(𝜏𝜏)
𝑑𝑑𝑑𝑑

� = 𝑅𝑅𝑛𝑛𝛿𝛿(𝑡𝑡 − 𝜏𝜏)   
(20) 

In Eq (20): 𝐸𝐸{ } stands for expected value, 𝛿𝛿( ) is the Dirac function, 𝑊𝑊𝑤𝑤  and 𝑅𝑅𝑛𝑛  
are disturbance and noise intensities, respectively. 

So we have the LTI MIMO system model in the following standard matrix form [2, 
4]: 
�𝒙̇𝒙(𝑡𝑡) = 𝑨𝑨𝑨𝑨(𝑡𝑡) + 𝑩𝑩𝑩𝑩(𝑡𝑡) + 𝒘𝒘(𝑡𝑡)
𝒚𝒚(𝑡𝑡) = 𝑪𝑪𝑪𝑪(𝑡𝑡) + 𝑫𝑫𝑫𝑫(𝑡𝑡) + 𝒏𝒏(𝑡𝑡)�   (21) 

Let us introduce a new variable of the form: 𝒛𝒛(𝑡𝑡) = 𝒙̇𝒙(𝑡𝑡). We have now: 

𝒛̇𝒛(𝑡𝑡) = 𝒙̈𝒙(𝑡𝑡) = 𝑑𝑑
𝑑𝑑𝑑𝑑

{𝑨𝑨𝑨𝑨(𝑡𝑡) + 𝑩𝑩𝑩𝑩(𝑡𝑡) + 𝒘𝒘(𝑡𝑡)}   (22) 
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Using Eq (22) the dynamic system state equation (21) can be re-formulated in the 

following augmented form: 

�𝒛̇𝒛(𝑡𝑡) = 𝒙̈𝒙(𝑡𝑡) = 𝑨𝑨𝑎𝑎𝑿𝑿(𝑡𝑡) + 𝑩𝑩𝑎𝑎𝒖̇𝒖(𝑡𝑡) + �𝒘̇𝒘
(𝑡𝑡)

𝒏̇𝒏(𝑡𝑡)�

𝒚𝒚(𝑡𝑡) = 𝑪𝑪𝑎𝑎𝑿𝑿(𝑡𝑡)
�   (23) 

In Eq (23): 

𝑿𝑿(𝑡𝑡) = �
𝒛𝒛(𝑡𝑡)
𝒚𝒚(𝑡𝑡)�  ;   𝑨𝑨𝑎𝑎 = �𝑨𝑨 0

𝑪𝑪 0�; 𝑩𝑩𝑎𝑎 = �𝑩𝑩𝑫𝑫�; 𝑪𝑪𝑎𝑎 = [0 𝑰𝑰];  (24) 

In Eq (24): 𝑰𝑰 is an identity matrix of dimensions of  𝑞𝑞 × 𝑞𝑞. Worth to mention that in 
the augmented MIMO system state equation (23) the control input is the first derivative 
𝒖̇𝒖(𝑡𝑡) taken by time from control input u(t), while the system output 𝒚𝒚(𝑡𝑡) remains the 
same vector, and, the augmented dynamic system represented by Eq (23) is observable 
and controllable. 

Due to special features of the random external and internal disturbances described 
above the expected effects from them in the future predictions are assumed to be zero. It 
is supposed that an observer is used to determine plant disturbance w(t) and measurement 
noise n(t), and their amplitudes are not magnified due to explicit derivations in Eq (23). 
Regarding this property further considerations of disturbance w(t) and measurement noise 
n(t) are neglected. 

It is assumed that any current time of sampling 𝑡𝑡 = 𝑇𝑇𝑖𝑖  the state variable of the 
augmented system 𝑿𝑿(𝑇𝑇𝑖𝑖) is available. At any future time 𝑡𝑡 = 𝑇𝑇𝑖𝑖 + 𝑇𝑇 the predicted 
augmented state variable 𝑿𝑿(𝑇𝑇𝑖𝑖 + 𝑇𝑇), with no expected effects from plant disturbance w(t) 
and measurement noise n(t) in the future predictions, can be described with following 
equation [2, 4]: 
𝑿𝑿(𝑇𝑇𝑖𝑖 + 𝑇𝑇) = 𝑒𝑒𝑨𝑨𝑇𝑇𝑖𝑖𝑿𝑿(𝑇𝑇𝑖𝑖) + ∫ 𝑒𝑒𝑨𝑨(𝑇𝑇𝑖𝑖+𝑇𝑇−𝛽𝛽)𝑇𝑇𝑖𝑖+𝑇𝑇

𝑇𝑇𝑖𝑖
𝑩𝑩𝒖̇𝒖(𝛽𝛽)𝑑𝑑𝑑𝑑 = 

=𝑒𝑒𝑨𝑨𝑇𝑇𝑖𝑖𝑿𝑿(𝑇𝑇𝑖𝑖) + ∫ 𝑒𝑒𝑨𝑨(𝑇𝑇𝑖𝑖−𝛾𝛾)𝑇𝑇𝑖𝑖
0 𝑩𝑩𝒖̇𝒖(𝑇𝑇𝑖𝑖 + 𝛾𝛾)𝑑𝑑𝑑𝑑  

(25) 

 
The projected future control trajectory of 𝒖̇𝒖(𝑡𝑡) can be expressed in the form given 

below: 

𝒖̇𝒖(𝑡𝑡) = [𝑢̇𝑢1(𝑡𝑡) 𝑢̇𝑢2(𝑡𝑡) … 𝑢̇𝑢𝑟𝑟(𝑡𝑡)]𝑇𝑇  (26) 
 
The input matrix of the dynamic MIMO system (21) is as follows: 

𝑩𝑩 = [𝐵𝐵1 𝐵𝐵2 … 𝐵𝐵𝑟𝑟]  (27) 

In Eq (27): 𝐵𝐵𝑖𝑖  is the i-th column of the input matrix B. The i-th control signal of Eq 
(26) 𝑢̇𝑢𝑖𝑖(𝑡𝑡) (𝑖𝑖 = 1, 2, 3, … , 𝑟𝑟) can be represented using following formula: 

𝑢̇𝑢𝑖𝑖(𝑡𝑡) ≅ 𝑳𝑳𝑖𝑖𝑇𝑇(𝑡𝑡)𝜼𝜼𝑖𝑖   (28) 

 
In Eq (28):  
 

𝑳𝑳𝑖𝑖𝑇𝑇(𝑡𝑡) = �𝑙𝑙1𝑖𝑖 (𝑡𝑡) 𝑙𝑙2𝑖𝑖 (𝑡𝑡) … 𝑙𝑙𝑁𝑁𝑖𝑖
𝑖𝑖 (𝑡𝑡)�;  𝜼𝜼𝑖𝑖𝑇𝑇(𝑡𝑡) = �𝜂𝜂1

𝑖𝑖 (𝑡𝑡) 𝜂𝜂2
𝑖𝑖 (𝑡𝑡) … 𝜂𝜂𝑁𝑁𝑖𝑖

𝑖𝑖 (𝑡𝑡)� , and 𝑁𝑁𝑖𝑖  is 
pre-chosen. The predicted augmented state 𝑿𝑿(𝑇𝑇𝑖𝑖 + 𝑇𝑇) at 𝑡𝑡 = 𝑇𝑇𝑖𝑖 + 𝑇𝑇 is as follows: 
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𝑿𝑿(𝑇𝑇𝑖𝑖 + 𝑇𝑇) = 𝑒𝑒𝑨𝑨𝑇𝑇𝑖𝑖𝑿𝑿(𝑇𝑇𝑖𝑖)

+ � 𝑒𝑒𝑨𝑨(𝑇𝑇𝑖𝑖−𝛾𝛾)[𝐵𝐵1𝐿𝐿1
𝑇𝑇(𝛾𝛾) 𝐵𝐵2𝐿𝐿2

𝑇𝑇(𝛾𝛾) … 𝐵𝐵𝑟𝑟𝐿𝐿𝑟𝑟𝑇𝑇(𝛾𝛾)]

𝑇𝑇𝑖𝑖

0

𝜼𝜼𝑑𝑑𝑑𝑑 (29) 

In Eq (29) coefficient vector 𝜼𝜼𝑇𝑇 = [𝜂𝜂1 𝜂𝜂2 … 𝜂𝜂𝑟𝑟 ] has dimension of ∑ 𝑁𝑁𝑖𝑖𝑟𝑟
𝑖𝑖=1 . 

The predicted output of the plant can be determined as: 

𝒚𝒚(𝑇𝑇𝑖𝑖 + 𝑇𝑇) = 𝑪𝑪𝑪𝑪(𝑇𝑇𝑖𝑖 + 𝑇𝑇)  (30) 
Solution of Eq (29) represents the convolution operation requiring solution of 

(𝑛𝑛 + 𝑞𝑞) × ∑ 𝑁𝑁𝑖𝑖𝑟𝑟
𝑖𝑖=1  integral equation, which means a huge computation load needed for 

calculations. To minimize that load integral equations can be solved numerically using 
their finite sum approximations. An analytical solution can be found to the convolution 
integral corresponding to the i-th input [4]: 

𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊(𝑇𝑇𝑖𝑖)𝑖𝑖 = � 𝑒𝑒𝑨𝑨(𝑇𝑇𝑖𝑖−𝛾𝛾)𝐵𝐵𝑖𝑖𝐿𝐿𝑖𝑖𝑇𝑇(𝛾𝛾)

𝑇𝑇𝑖𝑖

0

𝑑𝑑𝑑𝑑 (31) 

In Eq (31) 𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊(𝑇𝑇𝑖𝑖)𝑖𝑖  represents a matrix with dimensions of (𝑛𝑛 + 𝑞𝑞) × 𝑁𝑁𝑖𝑖 . Substituting 
eq (31) into Eq (29) shows that the future prediction of the plant output trajectory can be 
expressed in terms of convolution integral of (31), if to suppose that 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟. In this 
case matrix 𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊(𝑇𝑇𝑖𝑖)𝑖𝑖 can be derived as follows: 
𝑨𝑨𝑨𝑨𝒊𝒊𝒊𝒊𝒊𝒊(𝑇𝑇𝑖𝑖) − 𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊(𝑇𝑇𝑖𝑖)𝑨𝑨𝑝𝑝𝑇𝑇 = −𝑩𝑩𝑳𝑳𝑇𝑇(𝑇𝑇𝑖𝑖) + 𝑒𝑒𝑨𝑨𝑇𝑇𝑖𝑖𝑩𝑩𝑳𝑳𝑇𝑇(0)  (32) 

Obtaining matrices of 𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊(𝑇𝑇𝑖𝑖)𝑖𝑖  for 𝑖𝑖 = 1, 2, 3, … , 𝑟𝑟 the future prediction of 𝑿𝑿(𝑇𝑇𝑖𝑖 + 𝑇𝑇) 
can be determined. Finally, leaning on Eq (30) the predicted plant output also can be 
calculated. 

6.3 Dynamic optimal control of MPC Systems. In MPC of UAVs the cost function 
is applied for optimization (minimization). Supposing that future set-points 𝒓𝒓(𝑇𝑇𝑖𝑖 + 𝑇𝑇) =
[𝑟𝑟1(𝑇𝑇𝑖𝑖 + 𝑇𝑇) 𝑟𝑟2(𝑇𝑇𝑖𝑖 + 𝑇𝑇) … 𝑟𝑟𝑞𝑞(𝑇𝑇𝑖𝑖 + 𝑇𝑇)] are available for prediction horizon of 
0 ≤ 𝑇𝑇𝑖𝑖 ≤ 𝑇𝑇 + 𝑝𝑝. The common goal of the MPC is to find optimal control input vector 
driving the predicted plant output 𝒙𝒙(𝑇𝑇𝑖𝑖 + 𝑇𝑇) as close as possible (in the least square 
meaning) to the future set point of the 𝒓𝒓(𝑇𝑇𝑖𝑖 + 𝑇𝑇), i.e. error 𝒆𝒆(𝑇𝑇𝑖𝑖 + 𝑇𝑇) = 𝒓𝒓(𝑇𝑇𝑖𝑖 + 𝑇𝑇) −
𝒚𝒚(𝑇𝑇𝑖𝑖 + 𝑇𝑇) measured between predicted output and set point must be minimized. In this 
case, the integral performance index used for optimal control law synthesis can be derived 
as follows [2, 4]: 
𝐽𝐽 = ∫ �[𝑟𝑟(𝑇𝑇𝑖𝑖 + 𝑇𝑇) − 𝑦𝑦(𝑇𝑇𝑖𝑖 + 𝑇𝑇)]𝑇𝑇𝑸𝑸[𝑟𝑟(𝑇𝑇𝑖𝑖 + 𝑇𝑇) − 𝑦𝑦(𝑇𝑇𝑖𝑖 + 𝑇𝑇)] +𝑇𝑇𝑝𝑝

0
𝑢𝑢𝑇̇𝑇(𝑇𝑇)𝑹𝑹𝑢𝑢(𝑇𝑇)� → 𝑀𝑀𝑀𝑀𝑀𝑀  (33) 

In Eq (33) Q and R are symmetric weighting matrices with 𝑸𝑸 > 0  and 𝑹𝑹 ≥ 0 selected 
proper way, i.e. Bryson’s Rule, or principle of unit weighting, or finally, heuristic setting 
of the weighting matrices can be used. 

In some cases, so as to simplify and minimize workload on the selection of the 
weighting matrices Q is set to the identity matrix I, and R is set to zero. Regarding [4] the 
MPC performance dominantly depends of p (poles of the Laguerre functions) and N 
(number of orthonormal functions). In other words, selection of weights of Q and R is not 
necessary to archive. 

It is well-known that cost function can be re-written as function of 𝜂𝜂 instead of 
𝑦𝑦(𝑇𝑇𝑖𝑖 + 𝑇𝑇). With the assumption that UAV reference trajectory 𝑟𝑟(𝑡𝑡) would not change 
within the prediction horizon of 𝑇𝑇 + 𝑝𝑝 the quadratic integral performance index (cost 
function) can be expressed as: 
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𝐽𝐽 = 𝜼𝜼𝑇𝑇 ∏𝜼𝜼 − 2𝜼𝜼𝑇𝑇{𝚿𝚿1𝒓𝒓(𝑇𝑇) −𝚿𝚿2𝑿𝑿(𝑇𝑇)} +  
∫ 𝒘𝒘𝑇𝑇(𝑇𝑇𝑖𝑖 + 𝑇𝑇)𝑸𝑸𝑸𝑸(𝑇𝑇𝑖𝑖 + 𝑇𝑇)𝑑𝑑𝑑𝑑𝑇𝑇𝑝𝑝

0 → 𝑀𝑀𝑀𝑀𝑀𝑀  (34) 

In Eq(34): 
∏ = ∫ 𝝓𝝓(𝑇𝑇𝑖𝑖)𝑸𝑸𝝓𝝓𝑇𝑇(𝑇𝑇𝑖𝑖)𝑑𝑑𝑑𝑑

𝑇𝑇𝑝𝑝
0 + 𝑹𝑹�  (35) 

𝚿𝚿1 = ∫ 𝝓𝝓(𝑇𝑇𝑖𝑖)𝑸𝑸𝑑𝑑𝑑𝑑
𝑇𝑇𝑝𝑝

0     (36) 

𝚿𝚿2 = ∫ 𝝓𝝓(𝑇𝑇𝑖𝑖)𝑸𝑸𝑸𝑸𝒆𝒆𝑨𝑨𝑇𝑇𝑑𝑑𝑑𝑑
𝑇𝑇𝑝𝑝

0    (37) 

𝐑𝐑� = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜆𝜆𝑖𝑖𝑰𝑰𝑁𝑁𝑖𝑖×𝑁𝑁𝑖𝑖)   (38) 
 
In Eq(38): 𝜆𝜆𝑖𝑖  are eigenvalues of the extended system matrix A, and 𝑰𝑰𝑁𝑁𝑖𝑖×𝑁𝑁𝑖𝑖  is an 

identity matrix of the dimensions of 𝑁𝑁𝑖𝑖 × 𝑁𝑁𝑖𝑖 . 
The minimum of the cost function (34) with no hard constraints on any variables can 

be determined using the least squares technique [4]: 
𝜼𝜼 = ∏ {𝚿𝚿1𝒓𝒓(𝑇𝑇) −𝚿𝚿2𝑿𝑿(𝑇𝑇)}−𝟏𝟏   (39) 

 
The derivative of the control input can be determined as: 
 

𝒖̇𝒖(𝑇𝑇) =

⎣
⎢
⎢
⎡𝐿𝐿1
𝑇𝑇(0) 0 … 0
0 𝐿𝐿2

𝑇𝑇(0) … 0
⋮
0

⋮
0

⋱ ⋮
… 𝐿𝐿𝑟𝑟𝑇𝑇(0)⎦

⎥
⎥
⎤
∏ {𝚿𝚿1𝒓𝒓(𝑇𝑇) −𝚿𝚿2𝑿𝑿(𝑇𝑇)}−𝟏𝟏   (40) 

 
Integrating Eq(40) yields to: 

𝒖𝒖(𝑡𝑡) = ∫ 𝒖̇𝒖(𝑇𝑇)𝑑𝑑𝑑𝑑𝑡𝑡
0   (41) 

 
The continuous time MPC systems closed loop stability might be ensured by adding 

some weighting to the system terminal state in cost function of (35). The integral 
performance index (cost function) is a quadratic function, and hard constraints can be put 
easily to the system predicted output 𝒙𝒙(𝑡𝑡), to the first derivative of the control input 𝒖̇𝒖(𝑇𝑇), 
and, finally to the control input 𝒖𝒖(𝑡𝑡) required. 

To form a set of inequality constraints needed to solve quadratic optimization problem 
of the cost function (35) requires discretization of the trajectories. Let us set bounds on 
derivative of the control input as follows: 

 

𝒖̇𝒖𝑙𝑙𝑙𝑙𝑙𝑙 (𝑇𝑇𝑖𝑖 + 𝑇𝑇) ≤

⎣
⎢
⎢
⎡𝐿𝐿1
𝑇𝑇(𝑇𝑇𝑖𝑖) 0 … 0

0 𝐿𝐿2
𝑇𝑇(𝑇𝑇𝑖𝑖) … 0

⋮
0

⋮
0

⋱ ⋮
… 𝐿𝐿𝑟𝑟𝑇𝑇(𝑇𝑇𝑖𝑖)⎦

⎥
⎥
⎤
𝜂𝜂 ≤ 𝒖̇𝒖ℎ𝑖𝑖𝑖𝑖ℎ(𝑇𝑇𝑖𝑖 + 𝑇𝑇) (42) 

 
Eq (42) denotes the set of linear inequality equations. In Eq (42) 𝑇𝑇𝑖𝑖 , 𝑖𝑖 = 1,2,3, … 

denotes future time instants at which limits on 𝒖̇𝒖(𝑇𝑇) are imposed. Since 𝑳𝑳𝑘𝑘(𝑇𝑇);𝑘𝑘 =
1,2,3, … , 𝑟𝑟 are exponential functions guaranteeing exponential decay of 𝒖̇𝒖(𝑇𝑇𝑖𝑖 + 𝑇𝑇), it is 
necessary to set constraints only on the initial stage of the prediction horizon p, which can 
reduce number of the constraints required.  
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Constraints set on the control signal, the system predicted output variables and system 
states can be determined as follows below [1, 2, 4]: 

 

𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 (𝑇𝑇𝑖𝑖 + 𝑇𝑇) ≤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
� 𝐿𝐿1

𝑇𝑇(𝛾𝛾)

𝑇𝑇𝑖𝑖

0

𝑑𝑑𝑑𝑑 0 … 0

0 � 𝐿𝐿2
𝑇𝑇(𝛾𝛾)

𝑇𝑇𝑖𝑖

0

𝑑𝑑𝑑𝑑 … 0

⋮
0

⋮
0

⋱ ⋮

… � 𝐿𝐿𝑟𝑟𝑇𝑇(𝛾𝛾)

𝑇𝑇𝑖𝑖

0

𝑑𝑑𝑑𝑑
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝜼𝜼 + 

𝒖𝒖(𝑇𝑇𝑖𝑖 − 𝑇𝑇) ≤ 𝑢𝑢ℎ𝑖𝑖𝑖𝑖ℎ(𝑇𝑇𝑖𝑖 + 𝑇𝑇) 

(43) 

 
where 𝒖𝒖(𝑇𝑇𝑖𝑖 − 𝑇𝑇) is the previous control signal. Regarding experiences gained from 

computer simulations with pre-chosen p and N we have: 
 

� 𝐿𝐿𝑘𝑘(𝛾𝛾)

𝑇𝑇𝑖𝑖

0

𝑑𝑑𝑑𝑑 = �𝑨𝑨𝑝𝑝−1�𝑒𝑒𝑨𝑨𝑝𝑝𝑇𝑇𝑖𝑖 − 𝑰𝑰�𝑳𝑳(0)�
𝑇𝑇
 (44) 

where 𝑨𝑨𝑝𝑝  is defined by Eq (16). For a given set of time instants of 𝑇𝑇𝑖𝑖  equation (43) 
yield to the set of linear inequality constraints on control input signal, say: 

 
𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 (𝑇𝑇𝑖𝑖 + 𝑇𝑇) ≤ 𝑒𝑒𝑨𝑨𝑝𝑝𝑇𝑇𝑖𝑖 + [𝑰𝑰𝑖𝑖𝑖𝑖𝑖𝑖1 (𝑇𝑇𝑖𝑖) 𝑰𝑰𝑖𝑖𝑖𝑖𝑖𝑖2 (𝑇𝑇𝑖𝑖) … 𝑰𝑰𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟 (𝑇𝑇𝑖𝑖)]𝜂𝜂

≤ 𝑢𝑢ℎ𝑖𝑖𝑖𝑖ℎ(𝑇𝑇𝑖𝑖 + 𝑇𝑇) (45) 
 
And so we have predicted output of: 
 

𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙 (𝑇𝑇𝑖𝑖 + 𝑇𝑇) ≤ 𝑒𝑒𝑨𝑨𝑝𝑝𝑇𝑇𝑖𝑖 + [𝑰𝑰𝑖𝑖𝑖𝑖𝑖𝑖1 (𝑇𝑇𝑖𝑖) 𝑰𝑰𝑖𝑖𝑖𝑖𝑖𝑖2 (𝑇𝑇𝑖𝑖) … 𝑰𝑰𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟 (𝑇𝑇𝑖𝑖)]𝜂𝜂
≤ 𝑥𝑥ℎ𝑖𝑖𝑖𝑖ℎ(𝑇𝑇𝑖𝑖 + 𝑇𝑇) (46) 

 
The procedure described above assumed that all the states at any sampling time of 𝑇𝑇𝑖𝑖  

are known. Many cases, due to any reasons, it is impossible to measure all the states of 
the plant to be controlled, i.e. the state estimation is required to estimate state variables of 
𝑥𝑥(𝑇𝑇𝑖𝑖). In this case, the continuous time MPC control system will have following estimator 
equation [1, 2, 4]: 

𝒙𝒙�̇(𝑡𝑡) = 𝑨𝑨𝒙𝒙�(𝑡𝑡) + 𝑩𝑩𝒖̇𝒖(𝑡𝑡) + 𝑱𝑱𝒐𝒐𝒐𝒐𝒐𝒐[𝒚𝒚(𝑡𝑡) − 𝑪𝑪𝒙𝒙�(𝑡𝑡)]  (47) 
In Eq (47) 𝒙𝒙�(𝑡𝑡) is estimated value of 𝒙𝒙(𝑡𝑡), and, 𝑱𝑱𝒐𝒐𝒐𝒐𝒐𝒐 is the observer gain matrix 

calculated recursively, and off-line, i.e. no direct need of solution of Ricatti equation. 
Derivative of the control input 𝒖̇𝒖(𝑡𝑡) can be determined from the optimal solution of the 
MPC strategy.  

The observer can be designed using the static Kalman-filter standard technique. 
Supposing that the UAV spatial motion model (A,B,C,D) is completely controllable and 
observable, gain matrix of 𝑱𝑱𝒐𝒐𝒐𝒐𝒐𝒐 can be chosen such that the error of the estimation of 
𝒆𝒆(𝑡𝑡) = 𝒙𝒙(𝑡𝑡) − 𝒙𝒙�(𝑡𝑡) will decay exponentially at any desired rate and at any desired time. 
Worth to mention that the observer static gain matrix of 𝑱𝑱𝒐𝒐𝒐𝒐𝒐𝒐 is often limited due to 
existence of such measurement noises [1, 2, 4, 11, 12]. 
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7. CONTROL LAW SYNTHESIS FOR UAV SISO MPC SYSTEM 
 

In general, small UAV dynamics is considered for rigid body, linear model expressed 
either in MIMO (state space model), or in SISO (transfer function) forms. For further 
discussion of MPC control of small UAVs, the aerodynamic model of the lateral motion 
of the fixed-winged Trainer-60 SUAV was used is as follows [9]: 

 

𝒙̇𝒙 = 𝑨𝑨𝑨𝑨 + 𝑩𝑩𝑩𝑩 = �

𝑣̇𝑣
𝑝̇𝑝
𝑟̇𝑟
𝜙̇𝜙

� =

�

−0,7724 0 −18,9671 9,0867
1,9247 −19,9149 7,7565 0

69,1314
0

−23,8689
1

−2,5966
0

0
0

� �

𝑣𝑣
𝑝𝑝
𝑟𝑟
𝜙𝜙
� +

+ �

0
−23,8289
−11,7532

0

2,2582
1,5015

−15,2855
0

� �𝛿𝛿𝑎𝑎𝛿𝛿𝑟𝑟
�. 

(48) 

 
In Eq (48): v is the lateral translational speed, p is the roll rate, r is the yaw rate, ϕ is 

the roll angle position, 𝛿𝛿𝑎𝑎  is the angular deflection of the ailerons, and, finally, 𝛿𝛿𝑟𝑟  is the 
change in rudder angular position. 

In [9] the UAV lateral motion dynamic model was reduced to that of the short period 
motion dynamic model, i.e.: 

𝒙̇𝒙 = 𝑨𝑨𝑨𝑨 + 𝑩𝑩𝑩𝑩 = �
𝑝̇𝑝
𝜙̇𝜙� = �−19, 9149 0

1 0� �
𝑝𝑝
𝜙𝜙� + �−23,8289

0 � 𝛿𝛿𝑎𝑎   (49) 

The UAV spatial motion represented by Eq (49) is often subjected to some plant 
disturbance. Leaning on these conditions, the control free UAV can be represented as 
follows: 

𝒙̇𝒙 = 𝑨𝑨𝑨𝑨 + 𝑩𝑩𝑩𝑩 = �
𝑝̇𝑝
𝜙̇𝜙� = �−19, 9149 0

1 0� �
𝑝𝑝
𝜙𝜙� + �−23,8289

0 � 𝛿𝛿𝑎𝑎 + 𝑌𝑌𝑑𝑑𝑑𝑑  (50) 

The control free UAV model given by Eq (50) can represented with its Laplacian 
model, and the block diagram was constructed and it is depicted in Fig. 3. 

From Fig. 3. it is easily can be seen that the UAV lateral short period motion model is 
the SISO one. The plant disturbance filter transfer function is as follows below: 

𝑌𝑌𝑑𝑑(𝑠𝑠) = 0,1
0,01𝑠𝑠+1

  (51) 

From Fig. 3. the UAV roll rate dynamic model subjected to the plant disturbance 
(default) can be derived as it is given below: 

 

𝑝𝑝𝑛𝑛(𝑠𝑠) = 𝐴𝐴
1+𝑠𝑠𝑠𝑠

𝛿𝛿𝑎𝑎(𝑠𝑠) + 𝑌𝑌𝑑𝑑(𝑠𝑠)𝐷𝐷(𝑠𝑠) = 1,1965
0,0502𝑠𝑠+1

𝛿𝛿𝑎𝑎(𝑠𝑠) + 0,1
0,01𝑠𝑠+1𝑑𝑑

𝐷𝐷(𝑠𝑠)  (52) 
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FIG. 3. Block diagram of the SISO UAV model. 

 
The MPC system design problem can be formulated as follows: for the dynamic 

system illustrated in Fig. 3. design the controller ensuring closed loop control system 
dynamic performances as they derived by [10]. 

Design parameters of the MPC system has chosen using [2, 11, 12] as follows below: 
1) Roll rate reference: 5 deg/s; 
2) Sampling period: Δ𝑡𝑡 = 0,1 𝑠𝑠𝑠𝑠𝑠𝑠; 
3) Settling time:𝑡𝑡𝑠𝑠 = 6 𝑠𝑠𝑠𝑠𝑠𝑠; 
4) Model horizon N: 𝑁𝑁Δ𝑡𝑡 = 𝑡𝑡𝑠𝑠; N=60; 
5) Control horizon: M=5; 
6) Prediction horizon: P=50; 
7) Q=1; 
8) R=[1 1]. 
Let us consider a UAV flight scenario of the collision avoidance, whilst UAV is 

forced to change directional angle suddenly to avoid hitting any object being either 
natural or artificial. For that mission, to have fast responses from the UAV, control of the 
roll angle is required, to maintain roll angle position required. This method is widely used 
in automatic flight control of both manned and unmanned aerial vehicles. 

The reference model of the small UAV roll rate behavior to be followed by the closed 
loop control system has been chosen to be: 
𝑝𝑝𝑚𝑚(𝑡𝑡) = 5 ∗ 1(𝑡𝑡) deg/s (53) 

Using data defined above, the UAV roll rate closed loop control system has been 
designed and tested in time domain using cmpc.m built-in function of the MATLAB 
Model Predictive Control Toolbox [14, 15, 16]. Results of the computer simulation are 
depicted in Fig. 4.a. using stairs plotting option, and in Fig. 5.b. using conventional 
plotting option offered by MATLAB®. 

 
a. 

 
b. 

FIG. 4. Small UAV rolling motion MPC - closed loop control system step response. 
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Fig. 4 demonstrates that the roll rate reference given by Eq (53) is followed, and for 
the settling time range of 𝑡𝑡𝑠𝑠 it is reaching final value of the roll rate of 5 deg/s. For further 
scheduling and augmentation of the UAV closed loop control system dynamic 
performances one can change control horizon M, prediction horizon P, and weighting 
matrices Q and R of the integral performance index given by Eq (33). 

 
8. CONCLUSIONS AND FUTURE WORK 

 
The motive behind this research work was to summarize mathematical backgrounds 

serving for solution of the MPC design problems. The approach of predictive thinking 
about UAV flight path planning can ensure that future control input required to minimize 
error between the set point (reference path to be followed) and predicted output in least 
square means will be an optimal solution to a standard cost function minimization 
problem. Leaning on this technique UAV flight path design and flight via path designed 
can be optimized. However, the parameter setting of M and P, and parameter selection of 
Q and R, is requiring a complex set of dynamic performances of the UAV closed loop 
automatic flight control system, such as time domain performance indices (peak time, 
settling time, percent overshoot), and frequency domain performance indices (damping 
ratio, gain margin, phase margin), which are often unknown or, not defined ones, and 
validation of the results of the computer simulation requires some preliminaries serving to 
define set of performance indices of the UAV closed loop control system. 

The problem introduced for the MPC system design will be extended firstly for more 
sophisticated reference input signals like exponentials of the flare flight phase of the 
UAV landing. Moreover, the test input signals of the UAV closed loop automatic flight 
control system will be chosen for typical flight phases of the UAV collision avoidance 
maneuvers in any relationships, like UAV vs UAV, or UAV vs non-UAV. 

The competing UAV dynamic model available is the state space model to that of the 
applied transfer function models, and, for further preliminary computer aided design the 
multivariable model will be used to design closed loop MPC control systems. 

Finally, the default external disturbance model provided for use by cmpc.m built-in 
function of MATLAB will be substituted with random turbulence models ensuring more 
realistic representation of the stochastic atmospheric turbulences. 
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