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Abstract: Entropy represents a universal concept in science suitable for quantifying the 

uncertainty of a series of random events. In this paper we obtain a new type of entropy named 
Varma-Tsallis entropy starting from Tsallis entropy and Varma entropy. Some properties and 

applications of the proposed entropy in water engineering are presented. 
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1. INTRODUCTION 

 

In this paper we present some types of entropy, the connections between them and we 

propose a new type of entropy starting from Tsallis entropy and Varma entropy, namely, 

the Varma-Tsallis entropy. For this proposed entropy we present some properties and a 

procedure that shows how it can be applied in practical applications. An application of the 

proposed entropy for the determination of the cumulative distribution function (cdf) for 

the recorded annual discharges of the Prut river and the Somes river. 
 

2. TYPES OF ENTROPY 

 

2.1. Boltzmann-gibbs-shannon entropy (referred to as the shannon entropy, 

1948) [7] 

o Discrete case 

Let X be a random variable that takes on values Nixi ,1,  , that occur with 

probabilities ,ip 0 1 , 1,ip i N    and 1
1




N

i

ip . The information gain from the 

occurrence of any event ix  , is given by  

2( ) log ( )i iH x p    (1) 

i.e. the information gained is the logarithm of inverse of the probability of occurrence. 

For the all N events the average of information gain SH  can be expressed as 

2

1 1

( ) log ( )
N N

S i i i i

i i

S H p H x p p
 

      (2) 

Equation (2) is the Shannon entropy, also called informational entropy. 
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o Continuous case 

If the random variable is non-negative continuous with a probability density function 

(pdf) )(xf  , the the Shannon entropy can be writen as: 

 2

0

( ) ( ) ( ) log ( )S SS H X H f f x f x dx



     (2’) 

 

2.2. Renyi entropy (1961) [6] 

Renyi proposed a generalized entropy of order α as 

o Discrete case 

1

1
( ) log , 0 , 1

1

N

i

i

R H X p

  
 

 
    

  
  (3) 

Remark. Renyi’s entropy contains the Shannon entropy as a special case 

(
1

lim ( )H X S


 ). 

o Continuous case 

0

1
( ) log ( ) , 0 , 1

1
XR H X f x dx

  


 
    

  
  (3’) 

 

2.3. Varma entropy (1966) [12] 

o Discrete case 

1

1

1
( ) , 1 , 1

N

i

i

V H X p  

    
 

 



     


  (4) 

o Continuous case 

1

0

1
( ) ln ( ) , 1 , 1XV H X f x dx  

    
 



 
 

      
  

  (4’) 

Remark:  

The Varma entropy includes, as particular cases, the Renyi entropy.  

 
1

0

1
lim ( ) ( ) log ( )

1
H X R X f x dx



 
 




  

   (5) 

and the Shannon entropy 

 
1

01

lim ( ) ( ) log ( )H X S f x f x dx










     (5’) 

 

2.4. Kapur entropy (1967) [3] 

o Discrete case   

1

1
,

1

1
( ) , , 0, 0

N

i

i

N

i

i

p

K H X

p

 

 


   
 

 





    





 (6) 

o Continuous case 

 

 

0
,

0

( )
1

( ) , , 0, 0

( )

X

X

f x dx

K H X

f x dx



 


   
 




    







 (6’) 
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2.5. Tsallis entropy (1988) [10] 

o Discrete case 

   1

1

1
1 , 1,

1

N
m

m m i i

i

T H X p p m m R
m





    


  (7) 

o Continuous case 

  
0

1
( ) ( ) ( ) ( ) , 1 ,

1

m

m m m XT H X H f f x f x dx m m R
m



     
   (7’) 

Remarks: 

1. For 1m   Tsallis entropy converges to Shannon entropy. 

2. For 0m   Tsallis entropy is concave and for 0m   Tsallis entropy is convex. 

3. For all m the Tsallis entropy decreases as m increases. 

 

2.6. Varma-Tsallis entropy 

If we denote  

                                                                                                                      (8) 

o Discrete case 

 
 

 
 

(9) 

o Continuous case 

 

(9’) 

The equation (9’) becomes  

 
 

(9’’) 

Thus  

 
(10) 

 

Let   be a parameter. Then 

 (10’) 

 

3. PROPERTIES OF THE VARMA-TSALLIS ENTROPY 

 

3.1. Concavity, convexity 

It can be shown that for 

     
1 1 1

0 1 , , , (1 )i i i i ii N i N i N
a P p Q q G g ap a q

     
         (11) 

then  

i) 

 (12) 

 

for  
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ii) 

 (13) 

for  

iii) 

 (14) 

for  

iv) 

 (15) 

for    

 
 

3.2 maximum value 

It is well known that the Tsallis entropy attains an extreme value for all values of m 

when all , 1,ip i N are equal, i. e. 
1

ip
N

  and this extreme value is  

1

,

1

1

m

m extreme

N
T

m

 



 (16) 

For 0m   this extreme value is a maximum value and for 0m   this extreme value is 

a minimum value. Considering the equations (10), (10’) the extreme value for Varma-

Tsallis entropy will be given by   

 

 
(17) 

 

4. THE PRINCIPLE OF MAXIMUM ENTROPY 
 

Considering the following principles of ancient wisdom: 

- “speak truth and nothing but truth 

- make use of all the given information you are given and scrupulously avoid using the 

information not given to you 

- make use of all the given and be maximally uncommitted to the missing information 

or be maximally uncertain about it” [9], E. T. Jaynes (1957) [1,2] formulated the principle 

of maximum entropy (POME), which states that “one should choose the distribution that 

has the highest entropy, subject to the given information”.  

The implication here is that POME considers all of the given information and, at the 

same time, avoids consideration of any information that is not given. This is consistent 

with Laplace’s principle of insufficient reason (or principle of indifference), according to 

which all outcomes of an experiment should be considered equally likely unless there is 

information to the contrary.  

Therefore, POME enables entropy theory to achieve the probability distribution of a 

given random variable [8]. 

To obtain the probability distribution of a given random variable by POME, it can be 

used the following procedure: 

- fix the kind of entropy, in this case Varma-Tsallis entropy (9’)  

- give the constraints 

- maximize the entropy by POME 

- obtain the probability distribution according to constraints 

- determine the Lagrange multipliers 

- determine the maximum entropy. 
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4.1 SPECIFICATION OF CONSTRAINTS 

Given a sample of random variable X,  1 2, ,..., Nx x x , a type of restriction can be 

given by the following equations 

0

( ) , 0,1,2,3...k kx f x dx x k



   (18) 

where , 0,1,2,3...kx k  are empirical moments of random variable X.  

Remark: In water engineering, empirical moments k=0,1,2,3 are considered. 

The constraints (18) are not sufficient to determine ( )f x  uniquely, because there may 

be many, even infinity of probability distributions satisfying (18).  

 

4.2. Entropy maximization using lagrange multipliers 

To determine ( )f x  we should maximize the Varma-Tsallis entropy (9’) subject to 

(18) using the method of Lagrange multipliers. 

There are two fortunate circumstances favoured the great success of the POME, since 

in all optimization problems the difficulties arise when we have to decide whether 

- the extreme value found is a maximum or minimum 

- the maximum obtained is local or global 

- the non-negativity constraints are satisfied 

namely: the Varma-Tsallis entropy function is a concave function and the pdf is 

always non-negative. The Lagrangian function L is given, in this case, by  

 
1

0

0 0

1 0

1
1 ( ) ( ) 1

( ) , 1,2,3...

m r

k
i i

i

i

L f x dx f x dx
m r

x f x dx x k





 
 





   
       

    

 
   

 

 

 

 (19)  

where , 1,i i k   are the Lagrange multipliers. 

Differentiating equation (19) with respect to ( )f x  and equating the derivative to zero, 

we obtain: 

 
2

0

1 1
0 ( ) , 1,2,3...

( )

k
m r i

i

i

L m r
f x x k

f x m r m r


 



  
    

  
  (20) 

Thus, the pdf of X is  

 
1

2
0

1

1
( ) , 1,2,3...

1

k
i m r

i

i

f x m r x k
m r

   



  
          

  (21) 

Substituting equation (21) in equation (18) the result is, respectively: 

 
1

2
0

00

1
1 , 1,2,3...

1

k
i m r

i

i

m r x dx k
m r

 


 



  
          

  (22) 
 

 
1

2
0

00

1
, 1, , 1,2,3...

1

k
j i jm r

i

i

x m r x dx x j k k
m r

 


 



  
           

  (23) 

The system given by equations (22)-(23) do not have generally an analytical solution 

but can be solved with numerical methods. 

Substitution of equation (21) in equation (9’) leads to maximum Varma-Tsallis 

entropy 
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1

1

2
, 0

10

1 1
1 , 1,2,3...

1

m r
k

i m r
m r i

i

VT m r x dx k
m r m r

 

 

 



    
        

       
  (24) 

Last equation shows that the VTm,r of the distribution probability of X depends only on 

the constraints, since the Lagrange multipliers themselves depend on the same 

constraints. 

 

5. APPLICATIONS 

 

The design of the hydraulic structures like spillways, dykes or diversions is based on 

the maximum discharges corresponding to standard values of the annual probability of 

exceedance (usually in the range 1% - 0,1%). The length of the registered data rarely 

exceeds 50 years, which means that the empirical probabilities of exceedance of the 

maximum annual discharges are in the range 2-98%. The main problem is the real 

probability of exceedance of the outliers is not known, meaning that the values of the 

statistical parameters are influenced by the empirical probability which is assigned to the 

extreme values. 

The method described above was used to determine the pdf for the maximum annual 

discharges of Prut River recorded at Radauti and the pdf of the data for the Somes River 

recorded at Satu Mare. The maximum annual discharges rates of the river Prut at Radauti 

gauge station between 1978 and 2015 (Fig.1) , , 1,38iX i   , and of the river Somes at 

Satu Mare gauge station between 1928 and 1988 (Fig 2) , , 1,64iX i   are used to obtain 

the probability distributions of discharges in order to be able to make predictions of 

floods.  

The measured discharge data are normalized  

, 1,38 , 1,64
max( ) min( )

i
i

i i

X
x i respectively i

X X
  


 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG.1. Maximum annual discharges of the Prut River recorded at Radauti station 

 max=4240  ,   min=163  ,   = max− min=4077   
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FIG. 2.  Maximum annual discharges of the Somes River recorded at Satu Mare station 

 max=756  ,   min=134  ,   = max− min=622   

 

The empirical moments of these normalized records make out the first data set:  
1 2 30.25729 , 0.10104 , 0.05829x x x    

and for the second data set  
1 2 30.53851 , 0.34619 , 0.26046x x x    

The non-linear equations systems for Lagrange's multiplier, considering 

2 , 0.5, 2m r k  

 

are solved for each case using a numerical method.  

We obtain for the recorded discharges at Radauti 

0 1 22.579 , 2.671 , 1.104 .      

 
and for the recorded discharges at Satu Mare 

0 1 22.002 , 0.581 , 0.251 .         

Finally, the pdf for  2 , 0.5 , 2m r k  

 

is given by 

   
1

2
0

1

1
( , , , , )

1

k
i m r

i

i

f x m r k m r x
m r

    



 
    

   


 

and cumulative distribution function  

   
1

2
0

10

1
( , , , , )

1

x k
i m r

i

i

F x m r k m r t dt
m r
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FIG. 3. Graphics of probability density functions for the two gauges 
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A comparison between the maximum annual discharge quantiles corresponding to 

different mean return intervals (periods) that are estimated using the obtained probability 

distributions and other reference probability distributions recommended in Statistical 

Hydrology is presented in Table 1.  
 

Table 1. The maximum annual discharge quantiles corresponding to different mean return periods 
G

au
g
e 

st
at

io
n
 Quantiles Zα 

Probabilities α=0.90 α=0.95 α=0.98 α=0.99 α=0.995 

T (years) 10 20 50 100 200 

S
at

u
 M

ar
e,

  

S
o
m

es
  

Varma-Tsallis  555 620 681 711 730 

Log-Pearson type III   532 627 756 857 963 

Lognormal 3-parameter  534 633 768 875 987 

Generalized Extreme Value 530 627 760 866 979 

Gumbel Max 529 612 720 801 882 

R
ad

au
ti

, 
 

P
ru

t 

Varma-Tsallis 2138 2598 3127 3467 3742 

Log-Pearson type III 1953 2487 3272 3934 4662 

Lognormal 3-parameter  1924 2421 3135 3725 4361 

GEV (Generalized Extreme 

Value) 
1900 2477 3415 4292 5348 

Gumbel Max 2055 2488 3048 3468 3886 

 
5. CONCLUSIONS 

 

In this paper we introduced a generalization of Tsallis entropy, called Varma-Tsallis 

entropy, highlighted some properties and showed how it can be used to determine a 

probability density function of a random variable. The method presented here was used 

for the recorded maximum annual discharges of the Prut River and the Somes River. The 

results we obtained show that the method is reliable. 
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