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1. INTRODUCTION 

 

The transport problem appeared when the need to solve a group of economic problems 

arose. These problems consist in finding the smallest transportation costs for the products 

as they travel towards their destination. A classical variant of the transportation problem 

is a linear programming problem, and a solution was proposed in 1947 by Dj. Dantzing 

[10] that solves it through the simplex method. It consists in determining the optimum 

transport plan for the required amount of a single product from a source to the destination, 

that minimizes the transportation cost. This model of the problem is used to optimize the 

supply of businesses with raw materials, the supply of stores with products from  

wholesalers and the design of telecommunication, water, gas or petrol networks. Several 

authors, D. R. Fulkerson [19], R. G. Busacker și P. J. Goven [3], J. Edmonds and R. M. 

Karp [14], N. Tomizawa [40], M. Klein [27], D. D. Sleator and R. E. Tarjan [37], A. V. 

Goldberg and R. E. Tarjan [20, 21], P. T. Sokkalingam, R. K. Ahuja and J. B. Orlin [38], 

I-L.Wang, S-J. Lin [41], L. Ciupală [8], J. M. Davis and D. P. Williamson [11], P. Kovacs 

[28], A. Sifaleras [36], S. Ding [13], M. Dawuni and K. F. Darkwah [12], N. A. El-

Sherbeny [15], M. B. Cohen, A. Madry, P. Sankowski, and A. Vladu [9], A. M. P. 

Chandrasiri and D. M. Samarathunge [4], R. A. Maher and F. A. Abdula [3], J. Erickson, 

K. Fox and L. Lkamsuren [16], S. Abdi, F. Baroughi and B. Alizadeh [1] have proposed 

solutions to the network transportation problem with linear cost functions, and also with 

uncertain cost and/or capacities for each edge in the network. They have also presented a 

theoretical and practical analysis of the algorithms, fitted with conclusions and 

recommendations. 

When the network has non-linear cost functions, the problem becomes more 

complicated. In this case, there are several concepts that are widely used to solve it: the 

optimality conditions Kuhn-Tucker and the Lagrange multipliers, the first order 

derivatives (gradients), the second order derivatives (Hessian matrix), and also the 

penalty functions [39], [30].  



The Genetic Algorithm for Solving the Non-Linear Transportation Problem 
 

38 

The usage of these techniques is much more difficult in networks with concave cost 

functions, because there are multiple local minima and it can lead to only getting a single 

local optima. This type of problems have been studied in detail by R. Horst and P. M. 

Pardalos [24], R. Horst and H. Tuy [25], Q. He, A. Shabbir and G. L. Nemhauser [22]. 

We are especially interested in problems that describe real life situations which are 

typical for a modern economy. As this kind of models are extremely complex, our 

preoccupation resulted in genetic algorithms proposed to solve them. They have been 

described for the first time under the leadership of J. Holland [23] at the University of 

Michigan. The name “genetic” derives from the notions surrounding them, e.g. 

population, chromosomes, genes, selection, mutation, crossover. These are stochastic and 

heuristic algorithms, which mean that the obtained solutions is are not always optimal, 

but they come close to the optima. In general, these algorithms are polynomial and are 

used to solve complex problems. A comparative analysis of the genetic algorithms 

applied to optimization problems can be found in [33] and an overview of the algorithms 

is given in [29]. 

These algorithms are recommended because: one doesn’t have to know gradients and 

Hessian matrices;  they can’t get stuck on local optima and still work very well on big 

problems with a many variables. Several authors have used genetic algorithms to solve 

transport network problems: D.B.M.M. Fontes and J.F. Gonçalves [18], A. Sadegheih and 

P. R. Drake [35]. The implementation of the algorithm is often slowed down by the need 

to use auxiliary variables and the computation of the fitness function many times. 

Genetic algorithms have been proposed to solve micro circulation problems. Some of 

them are: the usage of adjacent roads to reduce the traffic from main roads [6], the 

minimization of the time spent before a plane can land [26] and the coordination of 

several urban bus routes [42]. 

  The genetic algorithm described in [5] can plan efficiently the high-speed train 

stations. In [44] is present an algorithm that minimizes costs and streamlines the metro 

activity and [7] describes an algorithm that improves significantly the security and 

efficiency of corridors with multiple-rail grade crossings. Another genetic algorithm 

proposed in [2] optimizes the routes of the airport buses by minimizing the transfer time 

of the passengers. The problem of planning the deposit spaces in ports is studied in [43] 

with the purpose of minimizing taxes.  

 

2. PROBLEM FORMULATION 

 

We consider the transport network problem described by the convex graph 

, , . The real production and consumption function  

is defined on the finite set of vertices . The concave non-decreasing functions of cost 

 are defined on the edges . To solve this non-linear optimization problem we 

must find a flow  that minimizes the function , thus satisfying the 

conditions:  
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 is the set of possible solutions, that satisfies the system of equations and the 

positivity restrictions, ,  . 

We will consider the problem in which any quantity can be transported through an 

edge, the costs being described by a concave function. We also consider that in no 

intermediary point can the quantity of goods increase or decrease, thus the flow 

conservation condition being satisfied. Which means that no intermediary points consume 

or produce flow. Then, the problem requires the minimization of transportation costs from 

the source to intermediary centers and then to the destination. 

In such situations, in which we have to check all admissible solutions, which can only 

be computed in a long time, the genetic algorithm is a solution that can provide the 

answer in a reasonable amount of time. Genetic algorithms are based on the theorem of 

templates [34]. A template  is defined as a pattern that describes a subset of 

chromosomes with similar genetic sections. Schemes have two properties: 

 the degree of a template , denoted by  – the number of fixed positions in a 

template; 

 the definition length of a template , denoted by  – the distance between the 

first and last position of the string of genes.  

The first step in using a genetic algorithm is deciding how to encode the problem, 

how to describe the chromosomes as admissible solutions. The most often used is binary 

encoding, but it can also be numerical, symbolic and character-based depending on the 

problem. A population consists of chromosomes, which is actually a set of admissible 

solutions.  

When creating a population, we must keep in mind that:  

 the chromosomes will have a constant length; 

 the number of chromosomes in a population is constant; 

 every population  is created from only the offspring of the population 

 or parents and offspring.  

We will consider the elements of a population of size  (or ) represented by 

numerical strings of length  constructed on the numerical alphabet 

. The population will evolve to better solutions using selection, 

mutation and crossover. The value of the fitness function will have smaller and smaller 

values which means that the chromosomes will be closer to the minimum solution. The 

elitist selection is preferred in a genetic algorithm, because it guarantees that promising 

chromosomes will not be lost.  

There are several ways in which we can make sure that we keep the best solution in a 

population. When applying selection at a step k, we will decide which chromosomes will 

participate in creating a new population. There are several methods of selection: 

- the probability of choosing a particular chromosome depends on the value of  its 

fitness function; 

- chromosomes are sorted in ascending order based on their fitness function and the 

probability depends on their position in the sorted list; 

- for each 2 randomly chosen chromosomes, we take the one with a smaller fitness 

function. 

For our problem, we will sort the chromosomes in increasing order and take the first 

half, thus we will never lose a good solution, even if it appears in the first population. 

These chromosomes will form the first half of the next population and will be parents to 

the offspring. Even if we aren’t guaranteed to get better solutions this way, the chance is 

better than when choosing random parents and the offspring will be at least as good as the 

parents. 
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The other half of the population will be obtained through the crossover of the 

previously selected chromosomes. A pair of offspring will be created by taking two 

adjacent chromosomes and making a random cut. The first offspring will be formed from 

the left part of the mother chromosome and the right part of the father chromosome; the 

second one will be formed from the left part of the father chromosome and the right part 

of the father chromosome.  

So if we have: 

mother  

father  

then the offspring will be: 

offspring1:  

offspring2:  

We can also use more cuts or create offspring from several chromosomes. 

The random modification of a the gene of a chromosome, also called mutation, has a 

mixed effect, it can improve or worsen the solution. The mutation will take place at a 

small rate of , e.g. , so that we may avoid losing not lose good solutions, but 

enough to produce new solutions in order to elude a local minima. Mutation will generate 

a random value to a randomly chosen gene. 

We must also define the stop condition. Usually, we run the algorithm until  

populations are created and return the best solution in it. But in this case we may get to a 

point where subsequent populations are the same. To avoid such a situation, we can stop  

breeding new populations when the condition  is satisfied for the 

best solutions in two consecutive populations  and . 

Based on what we described, a genetic algorithm completes several steps and at the 

end an optimum solution, it results in [32], [17]: 

Step 1. Generation of the initial population;  

Step 2. Evaluation of the fitness function for each chromosome of the population;  

Step 3. Selection of the chromosomes so that we don’t lose any good solutions;  

Step 4. Crossover of the selected chromosomes to create offspring with a fitness 

function at least as good as that of the parents; 

Step 5. Mutation of a gene of a chromosome at a rate of ; 

Step 6. Test of the stop condition; if it is satisfied, then we STOP; if not, we go back 

to Step 2. 

 

3. DESCRIPTION OF THE ALGORITHM 

 
The genetic algorithm starts with a random population of chromosomes, each individual 

chromosome being an admissible solution to the transport network problem. Every chromosome 

will have length . Using selection, crossover and mutation we will improve the population and 
obtain a smaller value of the fitness function.  

The algorithm generates in each population chromosomes at least as good as in the previous 
population, because at every step we select only the chromosomes with the lowest objective 

function value and the rest of the population is filled with their offspring. 

The genetic algorithm P1 proposed to solve the transport problem with non-linear concave 

functions consists of the following steps: 

1. Initialization. The initial population is generated in the following way: a string of  

random natural numbers will be generated, such that the first position will have a number  

between 1 and  (from the first vertex called source there is at least one outgoing edge and at 

most  edges), on every position  a number  between 0 and  will be 

generated, and the last position will have the number  (there are no outgoing edges from 

the last vertex, the destination). This string will be one of the chromosomes in the population.  
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The population will have  chromosomes. We will also randomly generate a matrix 

 that shows how much of the flow from vertex  will go through 

edge . For this matrix  only if the edge  doesn’t exist and . 

2. Evaluation of the chromosomes from the current population means evaluating the 
objective function of each individual. 

3. Selection of the parent chromosomes that will participate in the crossover is done so that 

their objective functions are the smallest possible. The chromosomes will be sorted in the 
ascending order of the objective function value. The first half of the new population will be 

formed from these chromosomes. 

4. Crossover of the chromosomes is realized between the previously selected chromosomes 
to form the second half of the population. We will cut randomly each parent in the same place, 

and combine these parts as described earlier to create two new offspring. This way, each pair will 
have two offspring and the size of the population will be constant. 

5. Mutation of a single gene of a chromosome will be done at a rate of , 
by generating a new random value for a gene of in a chromosome. 

6. Testing the stop condition can be done in a few ways: 

a) after creating  populations; 

b) a time restriction for very serious problems; 

c) stopping the algorithm when the condition  is satisfied, for the 

best solutions in two consecutive populations  and . 

In Step 2 we evaluate the chromosomes of a population. As we said earlier, each chromosome 

is a string of numbers in which position  represent the number  of outgoing edges in the 

subgraph that contain only edges through which the flow passes. To evaluate a chromosome, we 

must first obtain the solution encoded in it, and then evaluate the objective function.  

To decode the solution from a chromosome we will do the following: 

I. Let  be the number of outgoing edges from a vertex  in the graph  that describes the 

transport network. Then we have the following two cases: 

- , the graph that describes the admissible solution contains all outgoing edges from 

the vertex  of graph ; 

- , the graph that describes the admissible solution has only a subset of size  of 

outgoing  edges from vertex  of graph . These edges will be selected randomly. 

II. We know that we need to transport a quantity of flow  through the network from the 

description of the problem. This flow will be assigned to the edges based on the matrix 

 generated in step 1, that shows how much of the flow from vertex  

will go through edge . The obtained value is the flow  assigned to the edge  whose 

value will be placed in position  of the admissible solution of the form .  

After constructing the admissible solution, we will compute the objective function. If the 

chromosome is deemed fit to go into the next population, this value will be stored so that in the 
next populations only the offspring will be evaluated. This allows us to decrease the execution 

time of the algorithm, which is very important, especially for big problems. 

Theorem1: The genetic algorithm P1 uses  memory. 

Proof: The transport network is described by an adjacency list of size , the 

matrix  is of size  and a population of chromosomes is of 

size , and every new population will be changed in place, so no other 

memory is necessary. As a result, the algorithm needs  memory.  

Theorem2: The genetic algorithm P1 is polynomial and has a  complexity. 

Proof: To create the adjacency list that describes the graph  operations are 

needed. To create a population of size  with every chromosome of length ,  

operations are needed. To evaluate all chromosomes in a population, we need 

 operations, which creates a  complexity.  
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The crossover has a  complexity, and the mutation  – . As a result, the 

complexity of the algorithm is .  

Remark1: For sparse graphs, the complexity is . 

Remark2: The genetic algorithm P1 is convergent and always converges to a good 

solution. If the algorithm is run several times (for example in parallel or sequential) and 

we choose the best solution, we can get one very close to the global optima. 

 

4. PRACTICAL APPLICATION 

 

The algorithm described above was implemented in the Wolfram Language and tested 

on several random examples of different sizes. The tests were done using two stop 

conditions:  

1. the algorithm was stopped when the condition  was satisfied, 

for the best solutions in two consecutive populations  and ;  

2. the algorithm was stopped after  populations were made.  

As we can see in the following table (Table 1.), the execution time increases much 

slower for condition 1 compared to condition 2.  

This happens because after a number of steps, even of a optima is found it will be sent 

to the next population because the condition 2 will not be satisfied. From this data we can 

recommend the first stop condition for the algorithm. 

 
Table 1. Execution time of GA (seconds) 

Nr. of 

vertices 
t tk Nr. of vertices t tk 

10 0,0262 0,0950 60 6,3544 46,7701 

15 0,0809 0,3066 65 4,9332 83,5933 

20 0,2421 0,7972 70 3,5041 102,1030 

25 0,3294 1,6901 75 7,4183 195,1190 

30 0,5540 3,700 80 18,0235 193,3200 

35 1,1752 7,1764 85 12,8842 323,9760 

40 0,9351 9,0325 90 10,5738 311,3430 

45 1,1236 18,3405 95 45,6272 511,6740 

50 3,5589 24,2091 100 55,9386 529,4140 

55 2,2681 46,7701 120 117,9100 1621,2100 

 

Using the standard Wolfram Language function  we 

can obtain the global minima for our problem.  

 
Table 2. Execution time for Minimiz (seconds) 

Nr. vertices Minimize 

4 0.17 

6 3.08 

8 345.61 

 

The execution time for the function Minimize given in Table 2. increases starting from 

graphs with 8 vertices,  i.e. the execution time on a graph with 8 vertices is 3 times longer 

than the genetic algorithm on a graph with 100 vertices. 

By conducting these tests we could experimentally prove that the algorithm converges 

by computing the total objective function of a population and observing that it is always 

decreasing. 

 

 



Review of the Air Force Academy                                                                  No.2 (37)/2018 
 

43 

CONCLUSIONS 

 

In this paper, we have discussed the transportation network problem with concave cost 

functions. To solve this problem, we proposed a genetic algorithm, which uses elements 

of graph theory, to transform a chromosome into an admissible solution.  

1. The experimental results prove the correctness of the described algorithm, because 

we always get a good solution, and we can even get the global optima if we run it several 

times. 

2. The algorithm is convergent, because the total fitness function of a population is 

always decreasing. 

3. The execution time is much better comparing to standard Wolfram Language 

functions, which means that the algorithm is fast even for bigger networks. 
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