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Abstract: Several general mathematical properties of the Rayleigh′s family of distributions 

are examined in a consistent manner by using the power series distributions (PSD) class [1]. A 

new cumulative distribution function and probability density are obtained for the continuous type 
random variables which represent the maximum or the minimum in a sequence of independent, 

identically Rayleigh distributed random variables, in a random number by means of a power 

series distribution. An asymptotic result characterized by the Poisson Limit Theorem is 

formulated and analysed. 
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1. INTRODUCTION 

 

In the paper [2] sets out to introduce and analyse the properties of the maximum and 

minimum distributions for a sample of power series distribution. This can serve as a 

mathematical model to describe the probabilistic behaviour of the signals used on a large 

scale in the field of radiolocation. In this paper, the distribution is presented as being the 

distribution of the maximum or minimum value from a sample of random volume Z from 

a Rayleigh distributed statistical population, where Z is a random value from the power 

series distribution class. 

 

2. MIN RAYLEIGH AND MAX RAYLEIGH POWER SERIES DISTRIBUTIONS 

 

It is know that a random variable admits a Rayleigh distribution with the parameter  , and 

we note ( ), 0X Rayleigh   : , if the cumulative distribution function (cdf) is 
2

22( ) 1 , 0

x

RayF x e x


   , while the corresponding probability density function (pdf) 
2

22
2

( ) , 0

x

Ray

x
f x e x





  . 

We consider the random variables  1 2max , ,...,Ray ZU X X X  and 

 1 2min , ,...,Ray ZV X X X , where  
1iiX


 are independent and identically distributed random 

variables, ( ), 0iX Rayleigh   :  and Z PSD , that is ,...,,,
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1 2, ,...a a  is a sequence of real, non-negative numbers. 0   the radius of convergence of the 

power series
1
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   , (0, )  and  the real parameter of the distribution. 
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We point out that the random variables  
1iiX


 are independent of the random variable 

Z , the latter’s distribution being part of the power series distributions class [1]. 

In accordance with the working methods in the paper [2,4], it can be stated that the 

random variables RayU  follow the Max Rayleigh power series distributions of parameters   

and   (we note: ( , )RayU MaxRayleighPS  : ) and RayV  follow the Min Rayleigh power 

series distributions of parameters   and   (we note: ( , )RayV MinRayleighPS  : )  if the 

cumulative distribution functions (cdf) are characterized by the relation: 
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The probability densities functions (pdf) are characterized by the relation: 
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Proposition 2.1. If  
1iiX


 is a sequence of independent random variables, Rayleigh 

distributed with parameters 0  , while  1 2max , ,...,Ray ZU X X X  where Z PSD  

with ,...,,,
)(
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2

22

0
lim ( ) 1 , 0,

k
x

RayU x e x






 
   
  

   where  *min , 0kk k N a   . 

Proposition 2.2. If  
1iiX


 is a sequence of independent random variables, Rayleigh 

distributed with parameters 0  , while   1 2max , ,...,Ray ZV X X X  where Z PSD  

with ,...,,,
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Corollary 2.1. The r
th

 moments, r N , 1r   of the random variables 

( , )RayU MaxRayleighPS  :  and ( , )RayV MinRayleighPS  :  are given by: 
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where the  pdfs of the random variables  1 2max , ,..., zX X X  and  1 2min , ,..., zX X X  

are  1 2
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3. SPECIAL CASES 

 

3.1. The Max Rayleigh Binomial and Min Rayleigh Binomial distributions. The 

Max Rayleigh Binomial (MaxRayB) and Min Rayleigh Poisson (MinRayP) distributions 

are defined by the distribution functions presented in a general framework in [2], where 
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respectively.  

3.2. The Max Rayleigh Poisson and Min Rayleigh Poisson distributions. The Max 

Rayleigh Poisson (MaxRayP) and Min Rayleigh Poisson (MinRayP) distributions are 

characterized by the cumulative distributions functions defined by the relations (1) and 

(2), where 
**( ) 1A e   , with *   , 0  :  
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and                                                                    
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3.3. On the Poisson limit theorem. The following theorems show that the MaxRayP 

and MinRayP distributions approximate the MaxRayB and MinRayB distributions 

depending on certain conditions. 

Theorem 3.1. (Poisson limit theorem). The MaxRayP and MinRayP distributions 

can be obtained as the limit of the MaxRayB, respectively MinRayB distributions with 

distribution functions given by (5) and (6) if n    when nand 0 . 

In other words, 
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   , where ( )RayBV x  and ( ), 0RayPV x x   are the 

distribution functions of the random variables ( , , )RayBV MinRayleighB n p:  and 

( , )RayPV MinRayleighPoi  :  defined by (6) and (8); 
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   , where ( )RayBU x  and ( ), 0RayPU x x   are t 

distribution functions of the random variables ( , , )RayBU MaxRayleighB n p:  and 

( , )RayPU MaxRayleighPoi  :  defined by (5) and (7). 

Proof. We examine the convergence in terms of the maximum distributions ( )RayBU x  and 

( )RayPU x , 0x  . 

It is evident that: 
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Fig. 1 and 2 show the behaviour of the pdfs of ( , , )MinRayleighB n p , 

( , )MinRayleighPoi   , ( , , )MaxRayleighB n p  and ( , )MaxRayleighPoi    for some 

values of the parameters:  40n  , 
1

10
p  , 4  , 5  . 

Fig. 3 and 4 show the behaviour of the pdfs of ( , , )MinRayleighB n p , 

( , )MinRayleighPoi   , ( , , )MaxRayleighB n p  and ( , )MaxRayleighPoi    for some 

values of the parameters. 
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Fig. 1: Pdfs for the Max-Rayleigh-Binomial and Max-Rayleigh-Poisson distributions – graphical 

illustration of the Poisson Limit Theorem 
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Fig. 2: Pdfs for the Max-Rayleigh-Binomial and Max-Rayleigh-Poisson distributions – graphical 

illustration of the Poisson Limit Theorem 
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Fig. 3: Pdfs for the Min-Rayleigh-Binomial and Min-Rayleigh-Poisson distributions – graphical illustration 

of the Poisson Limit Theorem 
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Fig. 4: Pdfs for the Min-Rayleigh-Binomial and Min-Rayleigh-Poisson distributions – graphical illustration 

of the Poisson Limit Theorem 

 

CONCLUSIONS 

 

The results formulated and examined in this paper are in connection with the study of 

the random variable distribution, which can be expressed as being the maximum or 

minimum of a sequence of independent random variables identically distributed in a 

random number. In practice, this translates as the emission and reception of some signals 

is a random number, signals whose amplitude is a random variable characterized by the 

Rayleigh distribution [3]. The signals that best record either a maximum or minimum 

amplitude are of special interest to us.   

It has, thus, been presented in a consistent manner how to determine the maximum 

and minimum distribution of independent and identically distributed random variables, 

which form a random sequence. 

The Poisson Limit Theorem has been formulated when the random variable number in 

a sequence has a zero truncated binomial distribution and the limit distribution of the 

minimum and maximum is of Poisson type. 
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