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Abstract: In this paper, new distributions with applications in the reliability of multi-

component systems (and not only!) are obtained using the composition of two probability 
distributions. We consider the composition between: a) truncated binary distribution (Bin(n,p)) 

with Lindley distribution (Lindley()), b) Kemp distribution (Kemp(α)) with exponential 
distribution, (Exp(λ)) and c) truncated Zipf distribution (Zipf(α,n)) with exponential distribution 

(Exp(λ)). Algorithms for numerical simulation of these probability distributions and some 

comparisons between their performances are presented. 

 

Keywords: truncated binomial discrete distribution, Kemp distribution, Zipf truncated 

distribution, inverse method, composition method, lifetime variables 

 

1. INTRODUCTION 

 
Lindley (1958, 1965) [6], [7] introduced a new probability distribution that eventually 

triggered the interest of researchers. Known as the Lindley distribution, this new distribution 

was used in modelling system reliability [2]. Many researchers, including Faton Merovci [3] 

and a group of Romanian researchers coordinated by Professor Vasile Preda [8], introduced 

some generalizations of this distribution by gaining new divisions that proved appropriate in 

modelling practical situations. It is well known that the exponential distribution has wide 

applications in reliability. These distributions will be composed of truncated binomial discrete 

distribution, Kemp and truncated Zipf [4].  

The Zipf (α, n) truncated distribution has applications in situations such as: in a statistical 

population a small number of individuals have a high frequency property, a large number of 

individuals occasionally have that property and a large number of individuals rarely have that 

property [12]. 

In this paper we consider that the lifetimes of the components of a system with n parallel- 

connected components are random and identically distributed variables (iid) with either 

Lindley distribution or exponential distribution. The number of independent components is 

also considered to be a random variable whose distribution is, in turn, Bin (n, p), Kemp (), 

respectively Zipf (α, n) [5], [11]. 

 

2. COMPOSITION OF PROBABILITY DISTRIBUTIONS 

 

2.1. The Bin-Lindley(, N, P) distribution 
The case when the lifetime variables are distributed Lindley(), ie they have the 

probability density function (PDF) 
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If random variable L represents the life of a component of a parallel-connected system 

with the same operating characteristics, variables V and W are used to determine the 

reliability of the multi-component system. 

Consider now a random variable N whose distribution is truncated binomial [4], 

denoted Bin(n, p), ie probability function 
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Suppose that n is a sample of the random variable ),(~ pnBinN  . Then we will have: 

i) the probability density function of random variable V 
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After evaluation we obtain the expression 
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FIG. 1. PDF for random variable V with different parameters 

0 2 4 6 8 0 

0.2 

0.4 

0.6 

 PDF for V=min Bin_Lindley  

fv x   p  n  ( ) 

x 

(=0.5, n=5, p=0.67) 

0 2 4 6 0 

0.2 

0.4 

0.6 

PDF for V=min Bin_Lindley  

fv x   p  n  ( ) 

x 

(=0.5, n=5, p=0.8) 



Review of the Air Force Academy                                                                  No.2 (37)/2018 

7 

 
            PDF for V=min Bin_Lindley 

0 1 2 3
0

0.5

1

1.5

2

Densitatea V=min Bin_Lindley ( =2, n=5, p=0.67)

fv x   p  n ( )

x  

               PDF for V=min Bin_Lindley 

0 1 2 3
0

0.5

1

1.5

2

Densitatea V=min Bin_Lindley ( =2, n=5, p=0.8)

fv x   p  n ( )

x  
FIG. 2. PDF for random variable V with different parameters 

 

and for the cumulative distribution function 

pqe
x

pq
q

e
x

p
q

dtpntfpnxF

n

x

n

n

x

n

x

LBVLBV



































































1,
1

1
1

1

1

1

1
11

1

1
),,;(),,;(

0

____














 (11) 

 

  
FIG. 3. CDF for random variable V with different parameters 

 

  
FIG. 4. CDF for random variable V with different parameters 

 

The analogue calculations lead to the following expressions for the probability density 

function and the distribution function of the random variable W 
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FIG. 5. PDF for random variable W with different parameters 
 

  
FIG. 6. PDF for random variable W with different parameters 
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FIG. 7. CDF for random variable W with different parameters 

 

2.2. Kemp- exponential distribution Kemp_Exp(, ) 

Consider the n variables )(~,...,1 ExpLL n  iid having the exponential probability 

density function 
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With the notations above, relations (3), (4) - (7) become 

a) The cumulative distribution function of the random variable V is 
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b) The cumulative distribution function of the maximum random variable W is 
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Suppose now that n is a sample of the random variable )(~ KempN  . Let us 

consider the composition of the Kemp distribution with the distributions of the variables 

V and W. Then we will have: 

i) The probability density function of random variable V 
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condition fulfilled because 
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FIG. 8. PDF and CDF for random variable V with different parameters 

 
ii) Similar calculations lead to the following expressions for the of the probability density 
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respectively 
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FIG. 9. PDF and CDF for random variable V with different parameters 
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2.3. Zipf-exponential distribution Zipf_Exp(, N, ) 

Consider, like in the previous case, n random variables )(~,...,1 ExpLL n   iid and N 

a random variable having the Zipf(, n) distribution, ie its probability function is given by 
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Suppose N is a sample of the random variable distributed Zipf(, n). Then, similar to 

relations (3), (4) - (7) we will have: 

i) probability density function of random variable V 
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and for the cumulative distribution function 
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In the following figure are represented the graphs of the probability density function 

and the cumulative distribution function of the random variable ),,(_~  nExpZipfV   

for the parameter values 5.0,5,3   n  
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FIG. 10. PDF and CDF for random variable V with above parameters 
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respectively 
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The following figures show the graphs of the probability density function and the 

cumulative distribution function of the random variable ),,(_~  nExpZipfW   for 

values of parameters 5.0,5,3   n  
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FIG. 11. PDF and CDF for random variable W with above parameters 

 

3. NUMERICAL SIMULATION OF RANDOM VARIABLES V / W BY MEANS 

OF THE INVERSE METHOD 

 

The following theorem is the basis of the inverse method. 

Theorem. [9] 
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Prove.   )1,0( u  and   ])1,0([1 Fx , the generalized inverse function checks 
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3.1. The case of the Bin_Lindley(,N,P) distribution 

i) Numerical simulation of the random variable V 
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ii) Numerical simulation of the random variable W 

Let ),,;(~ __ pnxFW LBW 
 and 
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Table 1 summarizes the theoretical and empirical mean and variance obtained for 

10000 simulated variables for parameter values.  
 

Table 1. The theoretical and empirical mean and variance 

Variable 
Mean Variance 

Theoretical Empirical Theoretical Empirical 

V 0.2397 0.238 0.07411 0.07059 

W 1.22824 1.22641 0.52662 0.5219 

 

3.2. The case of the Kemp_Exp(, ) distribution 

i) Numerical simulation of the random variable V 
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Table 2 shows the theoretical mean and variance and the empirical mean and variance 

obtained for 10000 simulated variables for parameter values. 
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Table 2. The theoretical and empirical mean and variance  

Variable 
Mean Variance 

Theoretical Empirical Theoretical Empirical 

V 1.04999 1.04248 1.3195 1.33747 

W 1.48321 1.48257 1.86462 1.86015 

 

3.3. The case of the Zipf_Exp(, N, ) distribution 

The inverse simulation of the random variable V ~> Zipf_Exp (, n, ) returns to 

solving by an approximate method of the equation 
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where  )1,0(U ~U . 

For simulation by the inverse method of the random variable W ~> Zipf_Exp (, n, ), 

it is necessary to solve by an approximate method the equation 
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where  )1,0(U ~U . 

For the 10000 simulated values and for the parameters values 

5.0,5,3   n the theoretical and empirical mean and variance are presented in 

Table 3. 
 

Table 3. The the theoretical and empirical mean and variance for  =3,   =5 ,   =0.5   

Variable 
Mean Variance 

Theoretical Empirical Theoretical Empirical 

V 1.82236 1.80352 3.67365 3.60838 

W 2.20336 2.28037 4.44255 4.59143 

 

4. NUMERICAL SIMULATION OF RANDOM VARIABLES V / W STARTING 

FROM THE DEFINITION OF THESE VARIABLES 

 

4.1. The case of the Bin_Lindley(, N, P) distribution 

 We consider )1,0(U ~U and 
U

X
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 . 

If X is the solution of the equation 0),,( UXH  , taking 0,  


X
x , we have a 

sample of the random variable Lindley(). 

We generate the random variable Lindley() by inverse method with the following 

algorithm. 

The Lindley(, N) algorithm  

P0. Input  - distribution parameter, N - sample volume; 

P1. For k: = 1; N 

Generate )1,0(U ~U  

T:=(U>0)  0),,30(),,0(  UHUH  ); 

If T = true then 

If 0x  then 


X
Lk : ; 

P2. Returns L; Stop! 
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Algorithm for simulation of random variables V / W distributed Bin_Lindley(, n, p) 

P0. Input: (, n, p), N-volume of the sample; 

P1. For i: = 1; N 

         Generate ),(~ pnBinm   

while  m <1 Generate )1,0(U ~U , Generate ),(~ pnBinm  ; 

L: = Lindley (, m) 

),...,max(:,),...,min(: 11 mimi LLWLLV    ; 

P3. Returns V, W; Stop! 

Applying the algorithm for n = 5, p = 0.67,  = 2, for a sample of 10000 simulated 

values, the results from Table 4 are obtained. 
 

Table 4. The theoretical and empirical mean and variance for n = 5, p = 0.67,  = 2 

Variable 
Mean Variance 

Theoretical Empirical Theoretical Empirical 

V 0.2397 0.24447 0.07411 0.07848 

W 1.22824 1.2385 0.52662 0.52374 

 

4.2. The case of the Kemp_Exp(, ) distribution 

To simulate the random variable Kemp() we can use the composition method [1]. 

Let 
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which means that N is a sample of the random variable Kemp(). 

To simulate the Geom (y) geometric random variable we use the inverse method as 

follows: 
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In this case yq  . 

Algorithm for simulating the Kemp() variable by the composition method 

P0. Input: , N-volume of the sample 

P1. For i: = 1; N 

Generate )1,0(U ~U  

    
Uy )1(1:   

    Generate )1,0(U ~U  

           If )()0( yUy   then 
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ln
:
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P2. Returns K; Stop! 

 



Review of the Air Force Academy                                                                  No.2 (37)/2018 

15 

Algorithm for simulating V / W variables distributed Kemp_Exp(, ) 

P0. Input: (, n, p), N-volume of the sample 

P1. For i: = 1; N 

Generate )(~ Kempm   
For j: = 1; m 

         Generate )1,0(U ~U  

      If 1U  calculate )ln(
1

: UL j


  

    ),...,max(:,),...,min(: 11 mimi LLWLLV   ; 

P3. Returns V, W; Stop! 

 

Applying the algorithm for  = 0.8 and  = 0.5, for a sample of 10000 simulated 

values, the results in Table 5. 
 

Table 5. The theoretical and empirical mean and variance for  = 0.8 and  = 0.5 

Variable 
Mean Variance 

Theoretical Empirical Theoretical Empirical 

V 1.33561 0.08242 2.74246 0.00668 

W 2.94505 7.44391 6.07521 6.20381 

 

4.3. The case of the Zipf_Exp(, N, ) distribution 

To simulate the Zipf(, n)  distribution we use a variant of the algorithm [10] 

The Zipf_invers(, n) algorithm  

P0. Input: , n-model parameters 

       j: = 0; 

       Generate )1,0(U ~U ;  

P1. While U
H

H
xF

n

x






,

,
)(

 
 calculate j: = j + 1; 

P2. Returns N: = j;Stop! 

For the numerical simulation of the random variable Zipf_Exp(, n, ), starting from 

the definition of variables V and W, we use the following algorithm. 

 

The Zipf_Exp_Direct algorithm 

P0. Input: (, n, ) - model parameters, N - volume of the sample; 

P1. For i: = 1; N execute 

m: = Zipf_invers(, n); 

For j: = 1; m 

Generate )1,0(U ~U  ; 

)ln(
1

: UL j


  

j
mj

ij
mj

i LWLV



11
max:,min:  

P2. Calculate: the sample mean and variance of V and W: M[V], Var[V], M [W], 

Var[W]; 

       Returns M[V], Var[V], M[W], Var[W]; 

        Stop! 

Table 6 shows the average and the theoretical dispersion for parameter values 

5.0,5,3   n for a 10,000 volume sample. 
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Table 6 The theoretical and empirical mean and variance for  =3,   =5 ,   =0.5   

Variable 
Mean Variance 

Theoretical Empirical Theoretical Empirical 

V 1.82236 1.80352 3.67365 3.60838 

W 2.20336 2.28037 4.44255 4.59143 

 

The numerical results of applying the two above algorithms are listed in Table 6. 

 

5. CONCLUSIONS 
 

In this paper we obtained three probability distributions with possible applications in 

the reliability of multi-component systems using the computation method (consisting of 

discrete distributions with continuous distributions). For these distributions we simulated 

10,000 variables by the inverse method and using their definition for different parameter 

values and we compared the methods by considering the theoretical mean and the 

variance with the sampling mean and variance respectively. It can be concluded that the 

methods lead to good results as can be seen from the Tables 1-6.  
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