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Abstract: This study deals with the optimal control of unmanned aerial vehicles (UAVs). 

Concerns about the minimum energy consumption of the UAV are still in the focus of attention of 

many researchers. The optimal control based on the cost function minimization of the closed loop 

automatic flight control systems of the UAV is one of the techniques effectively supporting 
solution of the gain selection of UAV autopilots. Recently, the worldwide application of the UAVs 

has resulted in the wider application of the computer aided design of the closed loop flight control 

systems. This study highlights the optimal control of the multivariable UAV control systems, and 
presents a new design example based on Linear Quadratic Regulator (LQR) optimal control. 
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1. INTRODUCTION 

 

The optimal control has a long history. The LQR optimal design technique is still 

continuing to gain popularity among the optimal design methods currently available. The 

basic idea behind this method is that control law is designed via the minimization of the pre-

defined quadratic integral performance criteria. The dynamical system being considered like 

UAV dynamics is a deterministic one, so latter work will extend the challenge of the 

controller design to the random systems. Solution of such design programs is supported often 

by such computer software as MATLAB
®
. In this paper, the author will present the solution 

of the basic mathematical problem using calculus of variations, like solution of the matrix 

algebraic Ricatti equation (MARE). This method gained degraded importance in modern 

control engineering. Finally, a design example will demonstrate a numerical example for the 

solution of the LQR design problem. A unique principle of setting weighting matrices in 

quadratic integral criteria using unit weights with further heuristic scheduling of weights will 

be presented. 
 

2. LITERATURE REVIEW 

 

Integral performance indices have been exhaustively demonstrated in [1, 10, 11, 12, 

15]. There is a large variety of UAVs, being investigated and demonstrated in control law 

synthesis meaning. Design of the multirotor UAV, say, tri-, or quad copters are 

demonstrated in [2, 3, 4, 5]. The fixed-wing UAVs autopilot design examples are duly 

demonstrated by [6, 7, 8, 9]. The application of the LQR design method applied for 

finding optimal control laws is elaborated in works [3, 4, 5, 6, 7, 8, 9]. UAV automatic 

flight control systems design requirements are elaborated and presented in [13, 14]. The 

solution of the LQR design problem will be supported by MATLAB [16] and Control 

System Toolbox [17].  
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The impressive development path of the UAVs segmented to that of the classical and 

modern era is outlined in [18]. The challenging problem of the UAV integration into air 

defense is evaluated and a certain solution is proposed in [19]. 

 

3. LINEAR QUADRATIC PERFORMANCE CRITERIA 

 

The optimal design of the closed loop control systems is a well-known design 

technique of the multivariable (MIMO) dynamic systems [1, 10, 11, 12, 15]. Optimal 

controllers, say, full state feedback gain matrix K is designed and scheduled to minimize 

the performance index describing the cost function of the system. Let us consider the 

multivariable deterministic system, and, it is also supposed that all n state variables are 

measurable ones and available for the controller. The state and output equations can be 

given as follows below [1, 11, 12, 15, 16, 17]: 

  (1) 

where x is a column state vector of length n, u is the control input vector of length r, A is 

an (n×n) square state matrix; B is an (n×r) input matrix; y is a column output vector; C is 

an (m×n) the output matrix; and finally, D is an (m×r) direct feedforward matrix. 

For many physical systems the matrix, D is a null matrix. Thus, the system state and 

output equations can be represented in the following notation: 

  (2) 

Block diagram of the open loop UAV dynamics built by equation (2) can be seen in 

Fig.1. 

 

 
FIG. 1. Closed Loop block diagram. 

 

The control law can be expressed using state feedback gain matrix of K, thus: 

  (3) 

To find optimal control law, i.e. optimal state feedback gain matrix  for zero 

reference signal, r(t)=0, first let us find criteria of optimality. Let us consider a dynamical 

system with fixed end time, . Let formulate the control problem: choose control vector 

u(t) such that it minimizes the following cost function [1, 10, 11, 12, 15, 16, 17]: 

  (4) 

subject to  (5) 

with initial conditions of  (6) 

where  is the total cost,  is the terminal cost.  
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It I supposed that  is the non-negative cost function. Let us augment the 

cost function of (4) with co-state vector of  [10, 11]. The augmented total cost 

function now is as follows: 

  (7) 

The function of can be chosen to be of any mathematical form, because it 

multiplies term of . It is well-known that along the optimal trajectory variations 

both in  and  should die as . Variation of the augmented cost function of (7) can 

be derived as given below: 

  (8) 

where , , , , . 

 

Integrating by parts, the last term of the integrand of equation (8) can be expressed in 

the following form: 

  (9) 

 

Substituting equation (9) into equation (8) yields to the following augmented cost 

function: 

 (10) 
 

Initial conditions can’t vary at a later time. Thus, the last term in equation (10) is 

equal to zero. By evaluating the augmented cost function  defined by equation (10), it 

becomes evident that there are three variations inside the equation, which must be 

independently zero, i.e. any of x(t), u(t), or  can be varied: 

  (11) 

  (12) 

  (13) 

Re-arranging equations (12) and (13) yields to: 

  (14) 

  (15) 

The primary difficulty of the solution of that kind of optimal control problem is that 

state variables of the dynamical system propagate forward, while the co-state equation 

propagates backwards. The evolution of the co-state vector  is represented in reverse 

time, from its final state to the initial state. Next chapters deal with the solution of the 

optimization problems in backward time. 
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3.1 Solution of the optimal design problems using gradient method. The numerical 

solutions of the optimal control problems using gradient method can be explained in the 

following iterative steps and loops [10, 11, 12, 15, 16, 17]. 

Step 1) Define control input u(t), for the given . 

Step 2) To create the state trajectory, propagate state equation of  

forward in time. 

Step 3) Evaluate terminal cost function of , and propagate co-state vector 

of  backward in time, from  to  using equation (14). 

Step 4) At each step choose for the control input variation the following formula: 

, where K is positive scalar, or, for multi input systems, positive 

definite matrix. 

Step 5) Letting . 

Step6) Go back to Step 2, and repeat the calculation loop until solution converges. 

3.2 The LQR solution of the optimal control design problem. Let us set terminal 

cost at zero, i.e. , and let the cost function L be defined as follows [10, 11, 12]: 

  (16) 

where, ,  weighting matrix,  weighting matrix. 

For the linear (rather linearized) dynamical systems, one can set following equations: 

  (17) 

  (18) 

  (19) 

  (20) 

so that we have: 

  (21) 

  (22) 

  (23) 

  (24) 

  (25) 

Being interested in linear dynamical systems, the co-state vector can be represented as 

, where P is the cost matrix. By substituting this equation into equation (23), and 

using equation (21), we can get the following matrix-differential equation [10, 11, 12, 15, 

16, 17]: 

  (26) 

 

Equation (26) is the matrix Ricatti equation (MRE). If , and Q=const, and 

R=const, , i.e. the steady-state solution of the equation (26) can be rewritten as 

follows [10]: 

  (27) 

Solution of the equation (27) called the matrix algebraic Ricatti equation (MARE) 

yields to the cost matrix P. Finding solution to the MARE is supported by many 

numerical tools in linear algebra.  
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MATLAB supports solution of Ricatti equations both in continuous (are.m) and in 

discrete time domain (dare.m) [16, 17]. Finally, equation  will determine 

the optimal feedback law as it given below [10, 11, 12, 15, 16, 17]: 

  (28) 

where  is the optimal state-feedback gain matrix for multivariable 

dynamical systems, or optimal scalar gain. 

The optimal controller synthesis includes following steps [1, 10, 11, 12, 16, 17]: 

Step 1) The pair   must be controllable, and the pair  must be observable 

by R. Kalman. 

Step 2) Define weighting matrices of Q and R by Bryson’s Rule. 

Step 3) Solve MARE (equation 27) to find cost matrix of P. 

Step 4) Substitute matrix P into equation (28) to find optimal control law. 

Step 5) Check closed loop dynamic performances for similarity with those of the pre-

defined ones. 

Step 6) If there is no precise match with the required performances, return to Step 2 

and change weights heuristically whilst dynamic performances are met. 

 

4. DESIGN OF THE LQR OPTIMAL CONTROLLER FOR THE SMALL UAV 

 

The identified dynamical model of the short period lateral/directional motion of the 

Boomerang-60 Trainer UAV can be derived as follows below [15]: 

            (29) 

 

where v is the lateral speed, p is the roll rate, r is the yaw rate, ϕ is the roll angle position, 

 is the angular deflection of the ailerons, and, finally,  is the change in rudder angular 

position. 

Let us find stabilizing LQR controller of the Boomerang-60 Trainer UAV able to 

manipulate short period motion of the roll position angle. Prior to any kind of design 

implemented, the dynamical model of the UAV defined by equation (29) must be reduced 

to that of the short period one. One can get the following state space model: 
 

                                    (30) 
 

By using the  pair of matrices, the system’s controllability has been evaluated. 

The controllability matrix was calculated to be [16, 17]: 

                                                                                      (31) 
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which has a rank of 2, i.e. the dynamical system is the controllable one using Kalman-

criteria. 

By using the   pair of matrices, the observability matrix has been calculated to be 

[16, 17]: 

                                                                                                     (32) 
 

which has a rank of 2, i.e. the dynamical system is the observable one using Kalman-

criteria. 

The time domain behavior of the lateral short period motion of the UAV has been 

analyzed. The result of the computer simulation can be seen in Fig. 2.a. The input of the 

UAV was the unit step change in the aileron angular position, i.e.  

Fig. 2.a represents the roll rate and the roll angle behavior of the lateral motion of the 

UAV. The roll rate behaves as an exponential function, while the roll angle is an integral 

of the roll rate, i.e. it is a monotone increasing function of time. 

The open loop UAV has two poles on the complex plain. The poles and dynamic 

performances can be seen in Fig. 2.b. From these s-plane roots it is easy to see that 

aperiodic instability can be eliminated using full state feedback, and the design procedure 

implemented will ensure the optimal solution. 
 

  
  

(a) (b) 

FIG. 2. The open loop system behavior of the UAV (MATLAB-script: the author). 
 

The UAV closed loop system is supposed to exclude oscillatory behavior, and the 

dynamic performance expressed in settling time of the closed loop control system used 

for the design goal was [14]: 

  (33) 

During controller design, weighting matrices for the first trial have been chosen as 

follows: 

                                                                                                            (34) 

The dynamical system is observable and controllable by the Kalman-criteria, thus, the 

optimal controller can be designed. The optimal controller was designed using the MATLAB 

lqr2.m function. Using equation (34), the cost matrix of P, as solution of the MARE, and 

optimal state feedback gain matrix of K have been calculated to be [16, 17]: 
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                                               (35) 
The closed loop UAV system has been evaluated in time domain. The closed loop 

system response was found for the unit step change of the roll angle, i.e. 

. Fig. 3.a. represents roll rate and roll angle time domain behavior. 

Finding settling time for the 5% static tolerance field yields to , which 

represents a very slow behavior of the UAV. 

Roots of the closed loop control system of the UAV are located at , and 

. Thus, the open loop system root from the origin of the s-plane was shifted 

to that of the new coordinate of . In other words, the state 

feedback was used to ensure the stability of the closed loop control system of the UAV. 

 

  
(a) (b) 

FIG. 3. The closed loop control system behavior of the UAV (MATLAB-script: the author). 
 

From Fig. 3.a. it is easy to determine that the closed system time domain behavior is 

too slow. Therefore, to accelerate the transient response, let us use for the controller 

synthesis the following weighting matrices set heuristically to be: 
 

                                                                                                  (36) 

 

The optimal controller was synthesized using the lqr2.m function of MATLAB. Using 

equation (36), the cost matrix of P, and optimal state feedback gain matrix of K have 

been calculated to be [17]: 

 

                                               (37) 

 

The UAV time domain behavior has been evaluated. Results of the computer 

simulation can be seen in Fig. 4. 

Fig. 4.a. demonstrates that the closed loop system of the UAV has faster response to 

the reference input. Finding settling time for the 5% static tolerance field yields to 

, which is in line with the criteria defined by equation (33). In Fig. 4.b. it is 

easy to see that a pole of  is shifted to the newest place on the s-plane 

determined by , whilst position of the pole with coordinate of is 

not varied. 

 



Design and Development of the LQR Optimal Controller for the Unmanned  

Aerial Vehicle 

52 

  
 (a) (b) 

FIG. 4. The closed loop control system behavior of the UAV (MATLAB-script: the author). 
 

The UAV’s closed loop systems step responses have been compared. Results of the 

computer simulation can be seen in Fig. 5. 

 

  
 (a) (b) 

FIG. 5. The UAV’s closed loop control system behavior with different weights (MATLAB-script: the 

author). 
 

Fig. 5.b. shows the UAV’s roll angle outer loop of the closed loop control system. The 

heuristic set of the weighting parameters of Q and R has led to the system response with 

pre-defined dynamic performances given by equation (33). The roll rate inner loop 

transient can be seen in Fig. 5.a., which represents a meaningful increase of the maximum 

value of the roll rate. If such change in the roll rate amplitude is not allowed, weighting 

matrices of the integral performance index Q and R must be changed to those which 

would ensure a more complex and sophisticated set of closed loop dynamic 

performances. 

The heuristic change of the weighting matrices requires high-level engineering 

experiences deduced from the solution of different problems of modern control 

engineering and optimal control. Moreover, the engineering intuitions can help 

scheduling the process described above. 
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5. CONCLUSIONS 

 

The reason behind this research was to solve the basic optimization LQR design 

problem. This study has presented the solution to the LQR design method using calculus 

of variations. The optimal control strategy implemented for the design of the 

deterministic dynamical systems like UAV spatial motion has kept importance till recent 

days.  

The study has provided striking facts regarding the optimal settings in the closed loop 

flight control systems of the unmanned aerial vehicles, which is an emerging problem 

during the flight path design of the UAVs, extending flight radius, or flight time. The 

proposed method and the design example presented in this paper is the first step in the 

solution of more complex and challenging engineering design problems. 

Next step following the LQR design stage elaborated in this paper is the evaluation of 

the fitness of the proposed solution to the more sophisticated set of dynamic performance 

criteria. If there is a lack of any dynamic performances, the static proportional controller 

of the LQR solution will be supplemented with an integral term, so as to improve 

disturbance rejection ability. If it leads to extended settling time, a derivative term also 

must be introduced. The augmentation of the proposed results and future work is about to 

apply optimal PID-controllers ensuring dynamic performances set prior to. 
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