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Abstract: The differential equations and system of differential equations represent the kernel 

of the mathematical modeling, offering tools to predict the natural phenomenon from science, 
technics, medicine, biology, etc. In this study we will present the general case of a system of 

differential equations with many applications is engineering and we will derive all properties of 

its trajectory. The present study starts from the analyze of a dynamical system which trajectory is 
an ellipse. It is realized a classification of trajectories. The equation of trajectory is  reduced to 

the canonical form to simplify the calculus. Different geometrical properties of the trajectory are 

deduced using the analytical and differential study. At the end of this study it is formulated a 

property regarding the Podar of the trajectory.  The trajectory will be represented using the 
Matlab software. 
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1. INTRODUCTION 

 

All mechanism that evolve in time can be represented through a dynamical system. 

Elementary examples can be found in mechanics, computer science and medicine. The 

most important thing is the evolution of the system, that is represented by the functions 

that desctivbe the state  of the system as  a function of time and satisfy the equation of 

motion of the system, [1,2,6]. The dynamical systems are encountered also in chemistry. 

In the paper [3] is studied a chemical phenomenon, an example of an autocatalytic 

reaction. Using the stability in first approximation and the theory of bifurcations is 

studied the stability the autocatalytic reaction. The fractals can be also interpreted as 

dynamical sistems. Its geometry can be seen as a language that describes models and 

analyzes complex forms from nature. The basics of fractal geometry are algorithms that 

can be visualized as structures and different forms using the computer, [4,5]. 

Let us conside the following system of differential equations of first degree:  
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where 22 = baab , Zkba ,, . The characteristic polynomial is:  
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that leads to the following algebraic equation of second degree:  

0=0= 2222 kaba    

with the roots of characteristic equation that are the eigenvalues of the system: ki=1,2 . 

The general solution of the above system is:  
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 Taking into account the initial conditions:  

00 =(0);=(0) yyxx  

we obtain the values of the constants from te general solution: 
k

byax
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

 

therefore the solution of the above system with initial condition is:  
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Next we want to prove that the trajectory of the system (1) is an ellipse. Deriving of 

the trajectory equation is made by solving the differential equation total exact obtained 

from the system in the following way:  
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It is necessary to find a function CyxF =),(  whose differentiate of first degree is:  
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Through identification we have to solve the following system:  
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and the solution of the differential total exact equation will be:  
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By computation we obtain the trajectory equation:  

Cybyax =1)()( 22                                                                                                     (4) 

that represents the equation of an ellipse.  



Review of the Air Force Academy                                                                  No.1 (33)/2017 
 

71 

2. THE CLASSIFICATION OF TRAJECTORY 

 

In this section we wand to realize a classification of the conics from this family. We 

consider our particular conic:  

02:)( 222  cbyaxyxa  

and by comparing with the general form of a conic:  

0=222:)( 332313

2

2212

2

11 ayaxayaxyaxa   

we make the identifications: caaabaaaaa  =0,==,=,=,= 3323132212

2

11 .  

Therefore the big invariant of the conic will be:  
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For the case when 00,  ca  and 1b  the conic )(  is non degenerate. 

The small invariant of the conic is:  
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Next we have to discuss some cases:   

1.  If 0=  then we obtain that 0= . In this situation the conic )(  can not be a 

parabola R cba ,, . If 0=a  or 1=b  then the big invariant in also null: 0=  and we 

obtain that the conic could be formed by two lines: )()(=)( 21 dd   where )()( 21 dd P  or 

)(=)( 21 dd , or the conic is empty:  =)(   

2.  If the small invariant is negative: 0<  then we have 0,1,< cab  and the conic 

)(  is a hyperbola.  

3.  If the small invariant is positive 0>  and 0<I  with 00,,  bca  then the 

conic )(  is an ellipse. Here: baaaI  2

2211 == . The above conditions give us the 

following restrictions for the elliptic case: 01,>0,> abc .  

 Taking into account that the trajectory of our system (1) is an ellipse we will consider 

the third case into a particular representation. We chose: 1=2,=1,= cba  then the conic 

is: 0=122:)( 22  yxyx   

 

3. THE CANONICAL FORM OF THE TRAJECTORY 

 

Because 01=12 a  we will realize a rotation of the axis. Let A  be the matrix of the 

quadratic form of conic’s equation:  
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Then the characteristic equation corresponding to the matrix A  is: 0=)( 2IAdet   

that leads us to the following algebraic equation: 0=132    having the roots:  

 

2

53
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
 . 

 

The canonical form of the quadratic form is: 2

2

2

1 yx   . We do not effectuate the 

translation in the cnter because the general equation of the conic )(  does not contain 

terms of first degree. We chose 1  and 2  i.e. )(=)( 1221 asgnsgn    and we will obtain:  
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Applying the roto-translation method we obtain the angle   with which the reference 

coordinate rotates: 
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 using basic computations we will obtain that: 
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The rotation matrix for the base change is:  
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From XSX =  we obtain the connection between the coordinates before the rotation 

and the coordinates after the rotation. 

We want to determine the center of symmetry of ellipse in the initial reference system. 

Considering the function: 122=),( 22  yxyxyxf  we will solve the below system of 

equations:  
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and the solution is (0,0)O  that expresses the missing of the translation. 

The differential study on the conic is realized in the reference coordinates system: 

)( yOx  :  
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where the parametrisation of the ellipse is:  
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The equation of the osculator circle for the elliptical trajectory in  
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The equation of the osculator circle for the ellipse in ,0)(aA   is:  
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The curvature of the elliptical trajectory is:  
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Next we compute the tangent and the normal in a point )(tM  at the elliptical trajectory  
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The segment of the tangent, the segment of the normal, the sub-tangent and the 

subnormal of the elliptical trajectory 0=1:)(
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Proposition 1 The geometrical place of the projections of a fixed point I  on the 

tangents at the elliptical trajectory )(Gamma  is the Booth leminscate. (the podar 

trajectory)  

 

Prove. We consider the vectorial equation of the curve )(=:)( trr
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and the parametric equations of the podar are:  
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In our case the parametric equations of the Podar of elliptic trajectory  
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from the above equations through elimination of t  the implicit equation of the 

searched podar is the Booth lemniscate:  

 

0=)(:)( 2222'22'2 TXYbXa P  

where 
2

53
=,

2

53
=





 ba , see Fig. 1 



A Practical Approach of a Certain Class of Dynamical Systems 

76 

 
FIG. 1. The Lemniscate function 
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