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Abstract: The Hurst exponent (H) is a statistical measure used to classify time series. H = 0.5 
indicates a random series while H > 0.5 indicates a trend reinforcing series. The larger the H 
value is the stronger trend. In this paper we investigate the use of the Hurst exponent to classify 
series of financial data representing different periods of time. In this paper we show that series 
with large values of the Hurst exponent can be predicted more accurately than those series with H 
value close to 0.5. Thus the Hurst exponent provides a measure for predictability. 
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1. INTRODUCTION 

 
The Hurst exponent, proposed by H. E. Hurst [1] for use in fractal analysis, has been 

applied to many research fields, ranged from vibration and control, to biomedical signal 
processing, to temperature and velocity fluctuations in viscous fluid flows, and to climate 
change studies [2, 3]. It has recently become popular in the finance community [4, 5, 6] 
largely due to Peters’ work [7, 8]. The Hurst exponent provides a measure for long-term 
memory and fractality of a time series. Since it is robust with few assumptions about 
underlying system, it has broad applicability for time series analysis, i.e., the origin of the 
time series is unimportant for this analysis. In view of this, the conclusions drawn in this 
study are universal and can be employed in any area of research, in which forecasting of 
the time series behavior is necessary. 

The values of the Hurst exponent range between 0 and 1. Based on the Hurst exponent 
value H, a time series can be classified into three categories: (1) H = 0.5 indicates a 
random series; (2) 0 < H < 0.5 indicates an anti-persistent series; (3) 0.5 < H < 1 indicates 
a persistent series. An anti-persistent series has a characteristic of “mean-reverting”, 
which means an up value is more likely followed by a down value, and vice versa. The 
strength of “mean-reverting” increases as H approaches 0. A persistent series is trend 
reinforcing, which means the direction (up or down compared to the last value) of the 
next value is more likely the same as current value. The strength of trend increases as H 
approaches 1. Most financial time series are persistent with H > 0.5. 

In time series forecasting, the first question we want to answer is whether the time 
series under study is predictable. If the time series is random, all methods are expected to 
fail. We want to identify and study those time series having at least some degree of 
predictability. We know that a time series with a large Hurst exponent has strong trend, 
thus it is natural to believe that such time series are more predictable than those having a 
Hurst exponent close to 0.5.  
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In this paper we show that series with large values of the Hurst exponent can be predicted 
more accurately than those series with H value close to 0.50. Thus the Hurst exponent 
provides a measure for predictability. 

In this study, we chose a financial time series, because of its data easy availability in 
the public domain. Yet, it is noteworthy to emphasize here once again that the 
conclusions drawn in this study are universal and can be employed in any area of 
research, in which forecasting of the time series behavior is necessary, including any risk 
management analysis. 

 
2. HURST EXPONENT AND R/S ANALYSIS 

 
The Hurst exponent can be calculated by rescaled range analysis (R/S analysis). For a 

time series, X = X1, X2, …, Xn, R/S analysis method is as follows: 
(1) Calculate mean value m: 

∑
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(2) Calculate mean adjusted series Y: 
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(4) Calculate range series R: 
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(5) Calculate standard deviation series S: 
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 Here u is the mean value from X1 to Xt. 
(6) Calculate rescaled range series (R/S): 

( ) ntSRSR ttt ...,,2,1, ==  
 

(6) 

Note (R/S)t is averaged over the regions [X1, Xt], [Xt+1, X2t] until [X(m-1)t+1, Xmt], where 
m = floor(n/t). In practice, to use all data for calculation, a value of t is chosen that is 
divisible by n. 
Hurst found that (R/S) scales by power-law as time increases, which indicates: 

( ) H
t tcSR ∗=  

 
(7) 

Here c* is a constant and H is called the Hurst exponent. To estimate the Hurst 
exponent, we plot (R/S) versus t in log-log axes. The slope of the regression line 
approximates the Hurst exponent. For t < 10, (R/S)t is not accurate, thus we shall use a 
region of at least 10 values to calculate rescaled range. Fig. 1 shows an example of R/S 
analysis. 
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FIG. 1. R/S analysis for Dow-Jones daily return from 11/18/1969 to 12/6/1973 
 
In our experiments, we calculated the Hurst exponent for each period of 1024 trading 

days (about 4 years). We use t = 24, 25, …, 210 to do regression. In the financial domain, it 
is common to use log difference as daily return. This is especially meaningful in R/S 
analysis since cumulative deviation corresponds to cumulative return. Fig. 2 shows the 
Dow-Jones daily return from Jan. 2, 1930 to May 14, 2004. Fig. 3 shows the 
corresponding Hurst exponent for this period. In this period, Hurst exponent ranges from 
0.4200 to 0.6804. We also want to know what the Hurst exponent would be for a random 
series in our condition. 

FIG. 2. Dow-Jones daily return from 1/2/1930 to 5/14/2004 
 

FIG. 3. Hurst exponent for Dow-Jones daily return from 1/2/1930 to 5/14/2004 
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3. MONTE CARLO SIMULATION 
 

For a random series, Feller [13] gave expected (R/S)t formula as (8): 

( )[ ] ( ) 50.02/πnSRE t =  (8) 

However, this is an asymptotic relationship and is only valid for large t. Anis and 
Lloyd [14] provided the following formula to overcome the bias calculated from (8) for 
small t: 
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For t > 300, it is difficult to calculate the gamma function by most computers. Using 
Sterling’s function, formula (9) can be approximated by: 
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Peters [8] gave equation (11) as a correction for (9): 
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We calculate the expected (R/S) values for t = 24, 25, …, 210 and do least squares 
regression at significance level α = 0.05. Results are shown in table 1. 

 
    Table 1. Hurst exponent calculation from Feller, Anis and Peters formula 

 

log2(t) log2[E(R/S)] 
Feller Anis Peters 

4 0.7001 0.6059 0.5709 
5 0.8506 0.7829 0.7656 
6 1.0011 0.9526 0.9440 
7 1.1517 1.1170 1.1127 
8 1.3022 1.2775 1.2753 
9 1.4527 1.4345 1.4340 

10 1.6032 1.5904 1.5902 
Regression 
Slope (H) 

0.5000 
±5.5511e-16 

0.5436 
±0.0141 

0.5607 
±0.0246 

 
From table 1, we can see that there are some differences between Feller’s, Anis’ and 

Peters’ formulae. Moreover, their formulae are based on large numbers of data points. In 
our case, the data is fixed at 1024 points. So what is the Hurst exponent for random series 
in our case? 

Fortunately, we can use Monte Carlo simulation to derive the result. We generate 
10,000 Gaussian random series. Each series has 1024 values. We calculate the Hurst 
exponent for each series and then average them. We expect the average number to 
approximate the true value. We repeated this process 10 times. Table 2 below gives the 
simulation results. 

From table 2, we can see that in our situation, the Hurst exponent calculated from 
Monte Carlo simulations is 0.5454 with standard deviation 0.0485. Our result is very 
close to Anis’ formula.  
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Based on the above simulations, with 95% confidence, the Hurst exponent is in the 
interval 0.5454 ± 1.96·0.0485, which is between 0.4503 and 0.6405. We choose those 
periods with Hurst exponent greater than 0.65 and expect those periods to be bearing 
some structure different from random series. However, since these periods are chosen 
from a large sample (total 17651 periods), we want to know if there exists true structure 
in these periods, or just by chance. We run a scramble test for this purpose. 

 
Table 2. Monte Carlo simulations for Hurst exponent of random series 

 
 Simulated Hurst 

exponent 
Standard deviation  

(Std.)  
1 0.5456 0.0486 
2 0.5452 0.0487 
3 0.5449 0.0488 
4 0.5454 0.0484 
5 0.5456 0.0488 
6 0.5454 0.0481 
7 0.5454 0.0487 
8 0.5457 0.0483 
9 0.5452 0.0484 
10 0.5459 0.0486 

Mean  
Sdt. 

0.5454 
±2.8917e-4 

0.0485 
 

 
 

4. SCRAMBLE TEST 
 

To test if there exists true structure in the periods with Hurst exponent greater than 
0.65, we randomly choose 10 samples from those periods. For each sample, we scramble 
the series and then calculate the Hurst exponent for this scrambled series. The scrambled 
series has the same distribution as the original sample except that the sequence is random. 
If there exists some structure in the sequence, after scrambling the structure will be 
destroyed and the calculated Hurst exponent should be close to that of a random series. In 
our experiment, we scramble each sample 500 times and then the average Hurst exponent 
is calculated. The results are shown in table 3 below. 

 
Table 3. The average Hurst exponent on 500 scrambling runs 

 Hurst exponent  
after scrambling 

Standard  
deviation  

1 0.5492 0.046 
2 0.5450 0.047 
3 0.5472 0.049 
4 0.5454 0.048 
5 0.5470 0.048 
6 0.5426 0.048 
7 0.5442 0.051 
8 0.5487 0.048 
9 0.5462 0.048 
10 0.5465 0.052 

Mean  0.5462 0.048 
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From table 3, we can see that the Hurst exponents after the scrambling of samples are 
all very close to 0.5454 which is the number from our simulated random series. Given 
this result, we can conclude that there must exist some structure in those periods making 
them different from random series and that scrambling destroys the structure. We hope 
this structure can be exploited for prediction. 

 
5. HURST EXPONENTS AS A MEASURE OF PREDICTABILITY 

 
The efficient market hypothesis (EMH) asserts that financial markets are “efficient”, 

or prices on traded assets, e.g. stocks, bonds, or property, already fully reflect all available 
information and therefore are unbiased in the sense that they reflect the collective beliefs 
of all investors about future prospects. In other words, the efficient market hypothesis 
implies that it is not possible to consistently outperform the market – appropriately 
adjusted for risk – by using any information that the market already knows, except 
through luck. The efficient market hypothesis follows from the assumption that the price 
formation is a random walk process. The random walk theory asserts that price 
movements will not follow any patterns or trends and that past price movements cannot 
be used to predict future price movements. 

The paradox hidden behind the EMH is the same as the paradox of instantaneous 
energy propagation behind the classical diffusion (heat transfer) model. In physics, this 
paradox is overcome by assuming a finite time lag between the onset of a disturbance 
upon a physical system and the system’s response to it. A similar assumption of phase-
lagging behavior must be made to realistically describe the behavior of markets. 

Introducing a finite time lag between receiving a new piece of information and 
response to it, allows one, in turn, to introduce a quantitative measure of the market 
inefficiency at any given moment of time (the inefficiency coefficient). The more 
inefficient market is the more predictable its behavior. Hence, computing the inefficiency 
coefficient as a function of time and, from its value, the predictability measure, one 
should be able to forecast the market behavior. The forecast will be more exact for larger 
values of the inefficiency coefficient and less exact for smaller values, becoming zero at 
those instances when market becomes fully efficient (see [15] for details). 

In the preceding sections we showed that the Hurst exponent, a measure of the time 
series persistency, can be viewed as a predictability measure of those time series. It is 
hypothesized here that the time series in question are in fact solutions to fractional (non-
integer order) partial differential equations, in which the Hurst exponent is the order of 
the time derivative and is itself a function of time. This presents the main mathematical 
challenge of the model: to develop methods for solving fractional partial differential 
equations with time-variable order [16]. 

From the practical point of view, the knowledge of the value of the inefficiency 
coefficient provides one with an edge with respect to an average (unknowledgeable or 
uninformed) market participant. Hence, the Kelly theorem can be used to maximize one’s 
gain (the expected rate of return) from trading an asset. The Kelly theorem asserts that, to 
maximize one’s return, the fraction of the current bankroll to wager must be equal to the 
ratio of the expected net winnings to the net winnings if one wins [17]. 

Indeed, the amount of information, obtained from one’s knowledge of the Hurst 
exponent’s value is 

( ) ( ) ( )HHHHS −−−−= 1log1log  (12) 
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The function, given by (12), reaches its maximum at H = 0.5, S(0.5) = 1 and is 
symmetric with respect to its maximal value, that is, S(0) = S(1) = 0. At the same time, it 
is obvious that the behavior of time series becomes totally predictable at S = 0, while the 
case of S = 1 represents a totally unpredictable time series. From this, a predictability 
measure can be introduced merely as  

SP −= 1  (13) 

At the same time, P merely plays the role of the probability to win and the Kelly 
criterion gives 

( )
b

bPf 11 −+
=  (14) 

where f is the fraction of the current bankroll to wager, i.e. how much to bet and b is the 
net odds received on the wager ("b to 1"), that is, one could win $b (on top of getting back 
your $1 wagered) for a $1 bet. 

 
CONCLUSIONS 

 
In this paper, we analyze the Hurst exponent for all 1024-trading-day periods of the 

Dow-Jones index from January 2, 1930 to May 14, 2004. We find that the periods with 
large Hurst exponents can be predicted more accurately than those with H values close to 
random series. This suggests that stock markets are not totally random in all periods. 
Some periods have strong trend structure and this structure can be used to benefit 
forecasting. 

Since the Hurst exponent provides a measure for predictability, we can use this value 
to guide data selection before forecasting. We can identify time series with large Hurst 
exponents before we try to build a model for prediction. Furthermore, we can focus on the 
periods with large Hurst exponents. This can save time and effort and lead to better 
forecasting. 

It is noteworthy to emphasize here once again that the conclusions drawn in this study 
are universal and can be employed in any area of research, in which forecasting of the 
time series behavior is necessary, including any risk management analysis [18, 19]. 
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