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The computation of the flow over a multi-
element wing in high-lift configuration remains 
however one of the most difficult problems 
encountered in CFD [6]. The computations 
normally include a comprehensive code, 
coupled to Euler or Navier-Stokes solvers. 
The examples for a successful application of 
CFD are the codes FLUENT, OVERFLOW 
of NASA, FLOWer and TAU of Deutshes 
Zentrum für Luft und Raumfahr [2], [6], elsA 
and WAVES of ONERA [7], CFD++ [8], Star-
CCM+ [9], [10], TAS of Takoku University and 
UPACS of Japan Institute of Space Technology 
and Aeronautics [10], [11].

The high-lift configurations considerably 
complicate the flow physics by boundary layer 
transition, separations and reattachments. 
Therefore it is very important to generate 
the appropriate mesh around it. The mesh 
can be structured, unstructured or hybrid. 
The structured mesh is identified by regular 
connectivity. The possible element choices are 
quadrilateral in 2D and hexahedral in 3D. The 
unstructured mesh is identified by irregular 
connectivity, [7], [12]. This grid typically 
employs triangles in 2D and tetrahedral in 3D. 

1. INTRODUCTION

Aircraft wing high-lift configuration design 
is an important and challenging part of the whole 
aircraft aerodynamic configuration design, 
even dealing with a 2-D high-lift configuration 
design task which is an essential step for the 3-D 
high-lift configuration design [1], [2], [3], [4]. 
During the take-off and landing of an aircraft, 
the performance of high-lift devices has strong 
impact on the operating costs and environment 
around airports, such as improvements of 
payload, fuel consumption, and noise emission. 
Take-off and landing performance for very light 
airplanes are governed by the requirements as 
EASA CS-VLA [5]. The take-off and landing 
distances, and the important speeds as the stall 
speed with flaps retracted – VS, the design 
maneuvering speed – VA, the speed with 
flaps fully deflected – VF, and the stall speed 
with flaps fully deflected – VSF, depend on 
aerodynamic characteristics of the wing with a 
flaps deflected.

Nowadays, Computational Fluid Dynamics 
(CFD) is widely used for the prediction of the 
aerodynamic performance of the wing, at least 
in cruise flight. 
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The calculations were made for Reynolds 
number of Re=3×106 (respectively V=43.81 
m/s) at the sea level. The turbulent intensity 
and turbulent viscosity were 2.48% and 10 
respectively. The flap deflection angle, δF, was 
20º (take-off configuration).

The obtained results showed that the chosen 
arrangement of wing-single plain flap is not 
sufficiently effective from an aerodynamic 
point of view, although it is attractive with the 
simple design.

In [17], another configuration was studied: 
an airfoil with a single slotted flap (SSF), as it 
is shown in Fig.2.  A NACA 23012 airfoil with 
a 1.00 m chord has been used in all the CFD 
simulations. The single slotted flap with a 0.32 
m chord, corresponding to 32% chord, has 
been constructed in such a way as to match the 
geometry of the baseline airfoil. 

Fig. 2 NACA 23012 airfoil with single slotted 
flap

The multi-object hybrid mesh was 
generated. The calculations were made for 
Reynolds number of Re=3×106 (respectively 
V=43.81 m/s) at the sea level. The turbulent 
intensity and turbulent viscosity were 2.48% 
and 10 respectively. The flap deflection angle, 
δF, was 20º. The gap between the wing and 
slotted flap was 10% of chord (0.01 m).

The obtained results showed that 
configuration of a wing-single slotted flap is 
more effective than the configuration wing-
single plain flap.

During the design the question of changing 
the gap size for improving the aerodynamic 
characteristics of the airfoil with single slotted 
flap has appeared.

The structured mesh has many coding 
advantages, but it may be difficult to conform 
a single block to a complicated shape. A hybrid 
mesh contains a mixture of structured portions 
and unstructured portions. It integrates the 
structured meshes and the unstructured meshes 
in an efficient manner, [2].

Another important step is the choice of a 
turbulent model. The turbulence is the most 
challenging area in fluid dynamics and the most 
limiting factor in accurate computer simulation 
of the flow. An overview of turbulence modeling 
is done in [13]. There are the following turbulent 
models, [14]:

- Direct numerical simulation (DNS) 
- Large eddy simulation (LES) 
- Spalart-Allmaras model
- k-ε turbulent models 
- k–ω turbulence models 
The DNS and LES practically do not have 

engineering applications. The other models 
have practical applications, and advantages and 
disadvantages depending on the specific tasks. 

Fig. 1 NACA 23012 airfoil with single plain 
flap [15]

In [15], it was found the aerodynamic 
characteristics of an airfoil with single plain 
flap, as it is shown in Fig.1. For this purpose, 
first it was obtained numerical results for 
NACA 23012 airfoil which were compared 
with experimental wind tunnel data [16] to 
select density mesh and turbulent model. The 
aerodynamic characteristics were obtained 
by commercial CFD code FLUENT. It was 
generated structured mesh. The Spalart-
Allmaras method gave the closest results to the 
experimental data results.

Then the aerodynamic characteristics of 
NACA 23012 airfoil with single plane flap 
(SPF) were calculated. It was generated multi-
object hybrid mesh. 
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Fig. 4 Lift coefficient CL plot over the range of 
angles of attack α for a NACA 23012 airfoil, 
and NACA 23012 airfoil with a single slotted 

flap, with two sizes of the gap

Fig. 5 Drag coefficient CD plot over the range 
of angles of attack α for a NACA 23012 

airfoil, and NACA 23012 airfoil with a single 
slotted flap, with two sizes of the gap

3. DISCUSSION

The use of configuration wing with single 
slotted flap (SSF) shows an increase of the lift 
coefficient CL. Fig. 4 and Fig. 5 show that the 
lift coefficient CL and drag coefficient CD do 
not significantly differs throughout the range 
of angles of attack until α = 16°. There is no 
significant difference in velocity fields, as it is 
shown in Fig. 6 and Fig.7, too.

2. AERODYNAMIC CHARACTERISTICS 
OF NACA 23102 AIRFOIL WITH 
A SINGLE SLOTTED FLAP AT 

DIFFERENT SIZES OF THE GAP 

To calculate the aerodynamic 
characteristics of NACA 23012 airfoil with a 
single slotted flap at different sizes of the gap, 
the multi-object hybrid O-mesh is generated. 
The circle has a 10c (c-airfoil chord) radius. 
Around the airfoil, the flap and downstream 
are provided with a high refinement, as it is 
shown in Fig.3. Thus the meshes have about 
420 000 nodes and 420 000 elements.

Fig. 3 View of mesh geometry of NACA 
23012 airfoil with single slotted flap (gap 5%c)

The calculations are made for Reynolds 
number of Re=3×106 (respectively V=43.81 
m/s) at the sea level. The turbulent intensity 
and turbulent viscosity are 2.48% and 10 
respectively. The flap deflection angle, δF, is 
20º.

Fig.4 and Fig.5 show the curves of CL-α 
and CD-α of the numerical results for a NACA 
23012 airfoil, and NACA 23012 airfoil with a 
single slotted flap with two sizes of the gap, 5%c 
(0.005 m) and 15%c (0.015 m), respectively.
Figs. 6, 7, and 8 show velocity fields around 
NACA 23012 airfoil with a single slotted flap 
in the range from 0º to 20º angles of attack for 
the two gap sizes.
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Fig. 8 Velocity field around NACA 23012 
airfoil with a single slotted flap at α=16º; (a) 
gap size 0.005 m, and (b): gap size 0.015 m

When reaching α = 16° the lift coefficient 
CL is maximum, and it is bigger at SSF with gap 
size 15%c, (see Fig.4). The last statement can 
be explained with the fact that the airflow has 
passed rapidly through the gap, and reaching 
the upper section of the SSF it has accelerated 
(Fig.8). 

Therefore, the airflow velocity has 
increased, thereby increasing the value of lift 
coefficient CL. In Fig. 4 the lift coefficient CL 
decreased at SSF with gap size 5%c since the 
airflow passing through the gap has a delay. 

The curves on Fig. 4 and Fig. 5 show that at 
α = 18° and α = 20° the value of lift coefficient 
CL decreases at SSF gap size 15% c compared 
with the rate of CL obtained for the SSF gap size 
5%c. This is due to the fact that the flow field 
on the upper flap section is not optimal in these 
angles of attack. 

The drag coefficient CD is smaller at angles 
of attack bigger than 14° at SSF with gap size 
15%c, (see Fig.4). 

Therefore, a recommendation for a future 
work considers the question how to be shifted 
the single slotted flap (SSF)’s axis of rotation 
in order to obtain the optimal values of the 
aerodynamic characteristics.

Fig. 6 Velocity field around NACA 23012 
airfoil with a single slotted flap at α=6º; (a): 
gap size 0.005 m, and (b): gap size 0.015 m

Fig. 7 Velocity field around NACA 23012 
airfoil with a single slotted flap at α=14º; (a): 
gap size 0.005 m, and (b): gap size 0.015 m
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Thus, the values of the aerodynamic 
characteristics of the proposed wing and single 
slotted flap configuration can be improved.

Furthermore, this investigation is a base 
for making 3D CFD model and simulation of 
proposed wing-single slotted flap configuration 
for an ultra-light aircraft.
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