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Abstract:The aim of this paper is to investigate three special R -complex Finsler spaces with (o,)-
metrics. We characterize Weyl metric,quadratic metric and another special (a,f3)-metric in R -complex
Finsler spaces conditions.Some properties of these metrics are demonstrated.Finally we came with some

explicit examples.
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1. PRELIMINARIES

The study of R -complex Finsler spaces is
quite new.It has been initiated in[ 10] and it have
been recently developed in[3],[4].[7].

In the paper [10], it was extended the well-
known defnition of a complex Finsler space
[1], reducing the scalars to A€ R . The outcome
was a new class of Finsler space called the R -
complex Finsler spaces [10].

In this section we keep the general setting
from [3,10] and subsequently we recall only
some needed notions.

An R- complex Finsler space is a pair (M, F).
where F is a continuous function F : T’"M — R |
satisfying the conditions:

i) L = F2 is smooth on T'M = T°"M\{0};

i1) F(z,m) >0 the equality holds if and only
if n=0;

iii) F(z,\n,2,2n ) =IA F(zn,2,7); ¥4 € R,

The fundamental function L of a R -complex
Finsler space, induces the following tensors:

_ 4L B 8°L _ %L
gy = antan’ 9= 6?}"5?13"’5” Coantend
which satisfy interesting properties,

obtained as consequences of the homogeneity
condition iii)
ar . ﬂL . . . aL
N == = 2L; gyt + g =

ant’ a‘ﬂ B
2L = gin'n’ + 2g;0 + g
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Having an R - complex Finsler space, if we
suppose that F satisfies the regularity conditions:

g;; 1s nondegenerated, (i.e., det(g;;)7#0, in any
u€T'M), and it defines a positive definite Levi-
form for all z€EM, then such a class of spaces
is called R - complex Hermitian Finsler space.
Consider the sections of the complexified
tangent bundle of T'M. Let VI'MCT'(T'M) be

the vertical bundle, locally spanned by {— },
and VT"M its conjugate.

The idea of complex nonlinear connection,
briefly (c.n.c.), is an instrument in 'linearization'
of the geometry of the manifold T'M. A (c.n.c.)
is a supplementary complex subbundle to
VT'M in T'(T'M), i.e. T'(T'M)=HT'M@VT'M.
The horizontal distribution H T'M is locally

spanned by = i - Ni :1} where N{ (z,n)

are the coefl c1ents of the (c.n.c.). The pair {5, ,=

II

—f} will be called the adapted frame of
the (c n.c.).

A (c.n.c.) related only to the fundamental
function of the R - complex Hermitian Finsler
space (M,F), (called Chern-Finsler (c.n.c.)), has
the following local coefficients:

aio_ o 0L (fgvm =y , Bgsm )
Ve =87 mgmm S 1 T o)

Also, in a R - complex Hermitian Finsler
space, we have recovered the Chern-Finsler
connection, which is metrical, of (1,0)- type,
and it is given by
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where &; is the frame corresponding to the
Chern-Flnsler (c.n.c.).

2. R -COMPLEX FINSLER SPACE
WITH WEYL METRIC
We considerz € M, n € T'.M, n =n*—. An

R - complex Finsler space (M F) Wlth Weyl
metric is a space where:

L=F?=2af

:lE Tl_l—'.l _|)| — Re{a '1-1 11.-}+a 'H 1}.-

Jﬁ’:__z, n.Z, ?;,l = Re{uf?;‘]

Proposition 2.1: The invariants of this class
of R -complex Finsler spaces are:

J i 1
F‘l:-=E?P1=ﬂ’?P—:=.3_3?P—1— g =10

L 2ex

Proposition 2.2:The metric tensor field of
a R -complex Finsler spaces with (a,[)-metric:

L(o,p)= 20p is given by:
5 5

1.
I E
E:‘j=aﬂ:j—7g Lil; 2_|“ J
Or in the equivalent form:
g 5 a, .1
_.Tz—a_.T——"I_.I——r r '1'1.
8i; o Yoagd o257 % 7(1-5’

The next aim is to find the formulas for the
determinant and the inverse of the tensor field

g:5- The solution is obtained by the following
Lemma like in [7], for an arbitrary non-singular
Hermitian matrix Q.-.
Lemma: SupposJe:
® (Q::)is a non-singular nxn
complex matrix with inverse (Q*7)

e Ci and C:=C, i=1,.,n, are

complex numbers,

C* = Q¥ C;and its conjugates;

° C: = C:Ci = C:-CE N

H:'_,T = Q:‘j T C:-C:;
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Then

Det(Hy) ~(1£C%)det(Q.;)

Whenever (1£C%)=0 the matrix (H;) is
invertible and in this case its inverse is

Hi=QR7F cicl

1+C*

Proposition 2.3: For the R - complex
Hermitian Finsler space with the metric F=
J2af the determinant and the inverse of the
fundamental metric tensor g;;are given by

-y ;'T_QPHT;'
g ~F

(2687 + 2 A)a?—v)

i det(H.-) = — -
/ \ J g={26-+5)
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Example 1:
We consider a as in [4] given by
2oy < 1P 20l ~ 1<z >1)
1+ ¢lz9)?
defined over the disk
N
AM=ize"||z| =< rr= |— &= 0We set
' \'|E|
Az, = Fz‘e I I' - where b; = H and we
obtain i
L= 52

E. = [l 242l =20l 2 |=zm=]2) + (Re

(1+zl =7z (142 =20)

3.ASPECIAL CLASS OF R -COMPLEX
FINSLER SPACE WITH (a,f)-METRIC

Following the ideas from real case we shall
introduce a new class of R - complex

Finsler metrics.We take
(a+ f)*°
a

Lig, f)=F2 =
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In order to study the R - complex Hermitian
Finsler space with this metric, we suppose

that a;; = 0. Thus, only the tensor field g;
is invertible.

Proposition 3.1:The invariants of this class
of R - complex Hermitian Finsler space are:

B (e + 5)° B (o + )¢
fo= . = 1
Mo+ p)Hda+p) _ 3a+p)?
f-z= e e Ao
e+ 5)°
o= —o

g

Next step is to go forward and we
demonstrate :

Theorem 3.1:The metric tensor field of an
R -complex Hermittian Finsler space a with

e
(a,B)-metric L(o,f3)= - Sg_ is given by:

Or in the equivalent form:

(atf)E
b7 = —

I-\.':_llg.'- 1.1_ + & N1+
Sos 7 (a+f* it
After some preparations we compute the

inverse of the fundamental metric tensor:

ﬂ:‘j +

Proposition 3.2: For the R - complex
Hermitian Finsler space with the metric L=

gyt . .
- the determinant and the inverse of

the fundamental metric tensor g:; are given by:

Al AT ! ) !\ il
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Once obtained the metric tensor we must give

the expressions of Chern-Finsler(c.n.c.).After
some trivial calculus we have:

Proposition 3.3: Let (M,F) be a R-complex
Hermitian space with with (a,f)-metric L(o, )=
S

. Then we have the following expressions
of Chern-Finsler(c.n.c.):
Ni= el = 2 ['ﬂ'x Blis—1
B A R TP
3(E+ +M] '.Pm,l]

Thi )yt —

+

o2

11“}11 +J1 — Lhﬂ +
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Where:
S=—
2o+ 2
3 (ys .
z-'1=—\[ +5—-1+MNPw
Qae+fl\a
3 f”,, .'1r_f;1" '}T —
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As in [3] we have an example:

Example 2:

We construct this example like in [3] on
M = C? where we set the metric

al= Ez:—jil?}‘llf 4 g=#E 0?2+

gE tEEties 132

jthe (1,0)-differential form £ = ¢ 5% and we
have :

F _ ST 2 ‘_Ej.'- +zP n ‘__Fﬁz—.-ll-z—z+*+z* ;.I,E -
?Lb-z* nI+sETRHL |
4. R -COMPLEX FINSLER SPACE
WITH QUADRATIC METRIC
. . - 5 5 [+ B)%
InthiscaseweconsiderLic, 5) = F- = =

We compute the invariants and we have:
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Proposition 4.1:The invariants of this class
of R -complex Finsler spaces with quadratic
metric are:

B 282 263 342
Pom T i Ty T P T TR T
ep a2 g S g 3 e
P1=6F+ = +20+=— pug=3+— +=
, 2% 3 8
1T TR B

Following the same steps like before we can
compute:

Proposition 4.2:The metric tensor field of
an R -complex Hermitian Finsler space with

_(atf)?

(et, £)-metric L{c, B)=——— is given by:
(g B 28 28% 284 | 368
85 = (l c4+ a ot §Jaf.-7+[gs -_i_ of
£) +(3+"‘£, +£]b:b;+(—'3_ +I-
&= [y ooy 4 el (=4
33\:\ , ,
~ ) (155 + b,15)
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