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ANALYSIS OF THE FUNDAMENTAL LIMIT PROBLEMS IN
PROBABILITY THEORY

Ana-Maria RiTEA, Sorina Mihaela STOIAN

Transilvania University of Bragov, Romania

Abstract: This paper is aimed to emphasize that the DeMoivre-Laplace integral theorem, the Lindeberg-
Feller theorem, the Lyapunov's theorem and some others are a good basis for a large variety of problems
of fundamental importance to the theory of probability itself and to its multiplicity of applications in the
economic sciences, technology, natural sciences, even in the process of transmission of information or
in computer science and of course in many others. With the multicriterial analysis method we want to
establish which one has the sustainability more efficient.
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1. INTRODUCTION

Let v, be number of successes in 72 Bernoulli
samples. It is assumed that each success has
probability #. Then b(k; n.p) is the probability
of event v,, = k.

Usually we are interested in the probability
ofthe next event: the number of all the successes
that lie between two limits initial data, & and 5
. For @ and (5 integers, with a < 5, then this
event is defined by the relationship & < v, <
. Its corresponding probability is given by

Pla v, < f]==b(a;np) +b(a+ L;np) + -+ b(fmn,p).
(1)

Since the above sum can have many terms,
a direct evaluation is impossible.

First DeMoivre and then Laplace realized
that whenever n is larger, it can successfully
used the normal distribution function, in order to
obtain simple approximation of the probability
(1).

This is very important as we will see below,
not only for numerical computation.

A basic problem is to determine a scheme of
independent trials which consist in determining
the probability b(k;n,p) that in n trials an
event A will occur k times, and that in the rest
1 — k samples the complementary event 4 will
occur.

First we want to find the probability that
event A will occur in k specific samples ( for
example in trials with the numbers 3, 13, w0, 77.)
and do not occur in the rest n — k samples. But
this probability is p*g™™* (according to the
multiplication theorem of independent events).
Now, according to the additivity theorem of
probability &(k;#, p) is equal to the sum of the
probabilities above calculated for all different
modes k of occurrences of the event and n — &
nonoccurences from among # samples. From
combinatorial theory we know that the number
of such ways is

: 7 n!
f=“ﬁ]=—, — 0 =k < n.
oM R (n— k)

Therefore, we obtain for the probability

b(k; n, p) the following estimation

oy 1! oy
Jp.(q.. .<=1 _kj!p.(q.. =

kl(n

It is noted that for large values of n and k,
the computation of probability & (k; n, p) using

the formula (2}, involves great difficulties. Thus
there is a need to obtain asymptotic formula
that allows the calculation of these probabilities
with a sufficient degree of accuracy.

Thus, the main step is to obtain an asymptotic
formula for (2).

85



Analysis of the Fundamental Limit Problems in Probability Theory

DeMoivre is the first which determined in
1730, such a formula for e%symptotic Bernoulli's
scheme when p =g =—-. Later this result
was generalized by Laplace in arbitrary case
0 <p = 1.

2. LIMIT THEOREMS

In this way, we have the following limit
theorem:
Theorem [(1)] (the DeMoivre-Laplace local
limit theorem) If the probability of occurrence
of some event A in n independent trials is
constant and is equal to p,(0 < p < 1), and
q = 1 — p, then, the probability b(k;n, p) that
in each of the trials event A will occur exactly k
times satisfies the relation

1 2

1

blk:np):

(3)

as . — @, uniformly in all k, for which x,,, lies
in some finite interval, and verifies the equality

y 2Tnpg

k — g
Yoy = —— 0.
J/npq (4)
If M is an arbitrary positive constant set, then
for those k for which

T

|.l'"'l.

k

)

|x."!..'~c| E %
we have
o . 1 _Fnk
C:p.«:qn—.«: ~— ez
\ 2mnpg (5)

(The convergence is relative to n and is
uniformly relative to k)
Demonstration

From

k—np

.k —

Jneq

it results that

T

k=np+ /npqx,,

n—k=nq— . /npqx,,.

Because |x,,, | = M we have
k /npq
— =142 “x,. — 1sidect k~np
np np

n—k Jpg . . .
=1- X, = lsidecin—k~ng
g ng
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(6)

Using the Stirling formula we can writte

CEpgnrn

m oA |
\E/ Vw2 k, n-k " . ( )
A . P ~ LA
Ay N g—— (k(n = k)\2n
[6) W) VR '
where
(Y L —— ) L
e k”fn—k)"""‘p 9 vk \n—k/
Because k~mp and n — k~ng it results that
- , 1
Crp g " v——ep(n k).
\ 2mnpg

Further we demonstrate that

N
o(nk)~e 2

We use Taylor’s expansion of In{1 + x )

.
n(l+x)=x -t (—l)"'1 - for |x) < 1
and we get

¥ i k= [npgx, npgx,,,
IH(TP] :}{M(TP]\}{M( ‘\1 '{) [ - ] ”'{)

\H.f \K.-' . J{ . .'{
=k (_ VP Xon — rea x2

\ ko™ 2k
ng \k n n=k+. /npqx,,

()™ = 0= i) o [ -

=k =k . n-k

- a, Jme g

= n—kf’n[l—\ ==(n-k [—1“ - it
(=¥ -k ) ( ),\n—‘ o n-k) )
because ‘% x| = 1and

LN (*)

n—r

are satisfied for n sufficient large for

|?L'_,,!"-{| = M. So

f’tﬁfi‘ g ,

__1 -—I, 1

Bk
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i

—(?a—-k)(ﬂfﬂ?q;x ____jﬁii___xj 1on )=
=k 2n—k)r
=(— [npgx —@xf —---]—( [npgx __ oL }:
LV Pxy 2% nK | y PAx, Q(ﬂ-k) nk
npq 1 1 n:;oq .
=_1';.k(_7_ ; )_"'=—fi;lk—"-.
2 k n—k 2k(n—k)

We justify why we neglegt the terms of
developing the terms with higher level that two
for n — 0. When n is sufficient large, the two
quantities from (4) are smaller than 5 and

3

npq mpq
L R
k x..| =n—k)|———x_.

I;I{ 1. o E ) (ﬂ — k) FLA
Because pg =< 1 and |x.| = Mit does not
exceed
" Ve n (e
25 (n—k)?

which evidently tends to 0 when n — @2 due
to relations (6). Thus, using these relationes, it
results that

nlug Iin

Ly = &
Inpng O

Ing(n k)~

This is equivalent with

X
o(nk)~e 2

And it follows (5.

Remark. The approximation is used if n
is sufficient large such that np =5 and
n(l—p) = 5.

Some problems require the study of
probability theory amounts to a large number
of random variables. Central limit theorem
establishes the conditions under which the limit
distribution of the considered sums is normal.

Theorem [(2)] (DeMoivre-Laplace) Let A be
an eventwhich has the probability of realisations
© = P(A) in to an independent trials array. If
5, is the number of realisations of a in w trials,
then for any aand b, a < b,

b

. / S,—np _ 1 [ =
IimPlia= Zhy|l==— e I dx.
o .\..-' np V2T

@

I

fiw]

(7)

Demonstration
Let k be a possible value of 5, such that
5, = kit means

5,—np

nk

Jnpq
according to the relation (1). Then the

probability of the event from the right of the
formula (7] is

Z P({S,=k})= Z Crphgn®

By b By b
Given the fact that
k+1—np k—mnp 1
ksl ™ Tnx = — = =
Jnpa Jnea  Jnpg
we obtain
> RS, = kD~
c{xﬁkib
1 X
™ b7 e 2 [_1'.vz.;c—1 - x?’!..‘(}
a<xy y<h (8)

The correspondence between k and x,, is
bijective and when k varies from @ to n

, X, varies in interval [— [ .'j]
VIR

, hot continuous, with step

1

Tors1— Tux =

“npg

For n sufficient large, the interval will
contain [a, ), and the points x,, will be in
entire of [a, k), dividing it into equidistant
intervals of length

“mpg

We assume that the lowest and highest value
of k that satisfy the conditions a = x,, =< b
are, respectively, j and ! and we will have
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g ORI LAy

Ty wa, b <xy,
4 4 4 - - -

and the sum from (2) can be written

ZI P (xn) [:xn..'{—-l - x_“_”.{}

l:{:_ll
where
1 =
¥)l=—e I,
@(x) =

This is the Riemann’s sum for definited
integral

I} e(o)ax.

Making n — o2, the division becomes more and
more fine and the sum converges to the given
integral. It remains to determine the constant X
In the formula

/ S —np 1 _xt
limP( az——=%b ==I:JE' 2dx

n=ot

(9)

(10)
If we note

5, —
_X:—p

—_—

NE
then
M[X] =0,
DI(x)=1

and we obtain

(11)

Combining the relations (9} and (10} we will
obtain the relation

1 1% &
l—ﬁﬂf—J g I =1
b- J{‘_G

I

and making b — o we get

88

so the constant X from the Stirling’s formula
is V2.

Before giving a new wording to
DeMoivre-Laplace theorem, we will introduce
the notion of convergence in distribution.

function F in all the continuity point xy of the
distribution function F corresponding to the
random variable X, ie if

lim F, (xg) = Flxg)

"

converges in distribution to X and it is noted

X, > X.

Remark. Because there may be more random
variables with the same distribution function, it
results from definition that the limit of a range
of random variables converges in distribution is
not unique.

Remark. An example of such convergence is

variables distributed

Bi (m f] then {X,,},, = converges in distribution
to the random variable X distributed Poisson
with parameter 4. (Relation between binomial
distribution and Poisson distribution).

We now give a more general DeMoivre-

Laplace theorem. We note with

S, =X, +X,++X n=1

where X, j = 1,7n are independent Bernoulli
random variables. We know that

M[x]=p

Ly
4

D[S, ]=mnpg, j=T1m,
and for every n,

M[5,] =np, D*[5.]= npq.

Note
X, —M[x]

I
4+

D|[x;]

4

4
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s —M[5.] 1
Sp=t = =— ) X
n D [5“] Vi =

(11)
S, 1s a random variable and is called a
normalized random variable. We have for every
jand 1

M[x;]=0,Dx]=1

The liniar transformation that leads X;
inX; orS, in 5, aims to bring them to a random
variable with mean 0 and variance 1. Every 5
is a random variable which takes as values

k—np
X, =

el

Jneq

This is just x,, from DeMoivre-Laplace
theorem and

P({S;=x,.))=Cip*qg" ™ 0 k=n

If we use the corresponding distribution
function

P({S, <x}) = F,(x)

and if Fis the standard normal distribution
function, then DeMoivre—Laplace theorem can
be written in a form that is more elegant

lim F, (x) = F(x)

Remark. The theorem can be extended in
independent random variables with the same
distribution that does not need to be specified.
It should, instead that M[X;]=m < o and

D*[x]=¢* <. The Laplace theorem
occurs also in these conditions.
Application. We will now determine how likely
wrong betting options, 4 players of 15, each
playing independently during a game, where
the probability that a player has bet wrong is
p =03

The bett is a random variable with
binomial distribution:

k
x [C,if EG;S)*"E&?)“-*{]’
_pd it 2 B .
P, = C:(03)°(07) = 008l
0.057464801= 02184

With the help of DeMoivre-Laplace theorem
we can approximate

k=015

Xyg, = ——————=10,1408
JY15-03-0,7
_ _ 1 _[p1s08)®
C:(03)° (07 My ————¢" z ~0,2225
J2r-03-07-15

Theorem [(3)] For the sums 5, in generalized
conditions above and a < b there we have
b

lim P ({a < Sn_mm. b}J == L_J E_%a’x :

u::r\-'ﬁ J V2m

1

n=es

]

(12)

The general formulation of laws limit arises
in the following way:

Let (X, ), o astring of random variables. If
there exists two strings of real number (a,, ) ,z5
and (b, )5 such that

.r".:.-__II-\.-_

B
% X, where ¥ has a determined

distribiition law, then distributions thus obtained
constitutes a family that we call family of type L
distributions, in which the normal law occupies
a very important place.
Theorem [(4)]. Central
(Lindeberg-Levy)

Let (X)) ,.=n be a string of independent
random variables, identically distributed,
admitting moments of order one and two. If
we consider the string of random variables
[Yn :I neEl”

Yiog X — M(XEo4 X,
D [E:: 1 X.‘{ :I

limit theorem

Y =

"

then

B
Y, =X € N(0;1),

n—e 2n

n—or

lim F,(x) = lim P(w: ¥, (w) < x) =— J e

Demonstration
It is noted immediately that

M (Z.ﬁf;{j = Z M(X,)=mnm;

k=1 k=1
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m=M(X,),k=12,..

hE (Z Xk) =Z D*(X,) =neo*;

=1 k=1

=D¥(Xx,).k=12,..

and, so,

v =_ﬂ: (X, —m)
" \:ﬂr:"
Then.

"

—nw. (&)= ()

Because for every t € R, if n is sufficient large,
< 1, then we can extend in series around
“nel . . . . .

he origin, the function ¢ and we will obtain

It follows that

oy (£) = (1—;(1—sn)j |

lim s, =0

n—toc
and

=

lim g, (t)=¢ 2

From the uniqueness and inversion theorem it
results that

90

1 _3
lim Fy, [1) =— J e I dy.
nes V2m

bl ==}

Theorem [(5)] (Lyapunov) Let (X, ),x be
a string of independent random variables for
which there exist

v

M(x,)=m, D*(x,) =D} M(|X,-m, ) =H ke N
Wenote“ _
S,= (ngj H, = (ZH&) bE
k=1 =1
If
K,
E — =10
oo S
then
TR X, — M(X
y, = =22 (Zie=1 Xs )ax'ew(m)
D(J—lk:i'ij
ie
* n
1 -
lim Fy (1]— _JE‘ 2 dy
n—z Vo J
Demonstration

We will use also the characteristic
function method; as

hE (z Xk) = Z D*(x,) =5

k=1 k=1
The random variable ¥,, can be also written in
the following form

E:=1E-X:c - m:.::'
5

n

and, with this,

Y =

g

Py, (t) = M[::E'ir] "

n

o G
=M g TR O =

b
1]
—
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el

@y, (1) = l_["pf-';.-‘-‘"k [ji)

k=1 "

But,

Py —my (t) = e™5™ Px, () = a,(t) + ib(t)

If we note with G, (x) the distribution function
of the random variable X, = m,, it results that:

oo

a,(t) = J cos txdG, (x) =

— oo

D2 £ [
=1- ’; +— J B,x°dG, (x)
b, (t)= J sin txdG, (x) =
oF4 AN S
—1-= s J 8, %% dG, (x)

with [8;] < 1,j = 1,2.
Then,

DIt 3
Py —my, (t) = 1—=—+t°R,, where

-

oo

1| [ ) .

Rel == J[Bixc‘—ﬁgxc‘jd{?kﬁxj <
1§ . H?

=z Jlx“llﬂi—ﬁ'gld{?k(l‘ ii?'{
and, from here,

(1‘ J_ Dt te
P\ )7 252 353
and

f o Ditt fR
= Z In [ 1— —+— 1
. 257 357

Because =& — 0 whenn — @ , it results
that for every
£ = 0, there exist a rank N (&) such that
for every , )
n = N(g) we will have =% == = ,+ + 0.
. 5l
From here it results that

3 3
H; £

s3It
if i = .'"ur(E'j.

From the Lyapunov’s inequality (the
monotony of absolute moments) we have
D, < H._k € M and, so,

p: HE (H}® mE &
- = ,.:(,. Z—=<— k=12 ..1
S5 5; S 5o t-
Then, for every ¢ = 0,
Dit* R, & &P 5
e [
252 0 353| T2 3
We put
- [ D' t°R
In r=ZIﬂ[l— — 4+ —
@5 (D) . 282 35}
k=1 " " "
In the form
r:
In t)+—=
‘:5'3,__[ ) 5
_N ln(:L—D"ir:—rER"‘ | Dbit?
25, 353 252 |
k=1 - " "

7 . 1
Such that |In{1+ x) — x| < |7 if |x] = -
with notation

Diet 5 Ry .
A, = ——=%,B, = —, we can write
15, s,
#2
In Eﬂyﬁ[rj TS =

-
s

Zln(l—ﬂ.k +B,)— (A, +B,) + B,
=1
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B“ut

. ltPK: &2

Yisls——=
35z 3

k=1 "

also

k=1 k=1
LR
Tt —+ —
2 3
From here, it follows that
2 JEE e g0
In t)+—| € —+—+—- < £
@5, (8 2 3 3
ife = "I1*I=
So,

and from theorem of convergence of
characteristic functions, it follows that
= -
1 Ty
imF, (x)= — J e 2 dy.
noe R V2

— oo

Remark. If the variables of the string (X, ), <5
are identically distributed, then

Di=o* Hi=H3keN
and

n 1/2
5“=( pg) = g\n

=1

n 1/3

k=1
It follows that
K, H .
L —
5. o n—a

ie it satisfies the requirement of Lyapunov.

Definition. We say that the string of
independent random variables (X, ) nzs verify
the ,,L” condition ( Lindeberg condition)
if, for every £ =10, it follows the relation

(L)

limea,(g) =
n—+oo

92

1 n
:E,'.'}ﬂ—,,

H—oa

(x —m,)?dF,(x) =0
" k=1 L ey 225, )

where

Folx) = P({ow; X, (w) < x}).
Theorem [(7)] (Lindeberg-Feller) Let
(X, ),ens a string of independent random

lim F‘K (x)m‘= #(x),xER

and

. Ty
lim max — =10
n—o 1aken S;

if and only if

g

1
lim -
n—oc 52

RS Ll —my | xes, )
(is satisfied the ,,L” condition).

We highlight some direct consequences

of Lindeberg Feller theorem.
Consequence [(7)] If the random variables that
compose the string of independent variables

(X,) s are identically distributed, then
lim F, (x) =#(x),vxE R

(x _m:.::':dF:c[?'-':' =0

Demonstration
In this case,
M(X,)=m, D*(X,) =o%k € N"and, so,

5 nw_ T \*E
With these, the Lindeberg’s condition
become

ﬂn(gjz Lﬂ J (l_m):dF[ljz
T
k=1 :_1':|.1'—.‘."!|:“-’ﬁ7“‘-;}
1 1
- (x — m)~dF (x)
LT

ilx—mlzzem)}

and, 80, im ¢, (£) = 0

W=t

ie Lindeberg’s condition is accomplished.
Consequence [(8)] If the string of the
independent random variables (X, )5
has the property that the random variables
X, are uniformly bounded, and admits finite
dispersions
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lim§, =+,

then
lim Fy (x) = #(x)
Demonstration

Given that the random variables
X,k € M” are uniformly bounded, it results
that (3)4 = 0 such that¥, —m, = 4, k € N",
From that, it follows that:

(x —m, ) dF(x) =

{wilx—my =25}

- ' (%, (@) — m)2dP(w) <

Lol ple)—my | =28, 1

< ATP({w; 1X, (w) —m,| = &5, 1)
Since

lim §, = +oo,

H—oa

we can take n sufficient large such that £5,, = A

, and in this case,
P({w; X (w) —myl = e5,]) =0
and
(x—m)%dF(x) =0, ke N
':|-1'—-‘-"!Fc|}"75?’-}

which implies checking the condition ,,L”.
Given the Lindeberg-Feller central limit

theorem, we can easily prove the theorem of

Lyapunov.

Theorem [(9)] (Lyapunov) Let the string of

the independent random variables (X, ) yep. If

there exists v = Q such that:

n

1 24n
lim B, (n) = lim I n M(lxy —m |777) =0

n =1
then

lim F, (x) =®(x),¥x € R
Demonstration

We verify if the ,,L” condition can be
checked:

1 " L&ls
= (x —my)?

- “ dF;c('X:'
E'-S_“f

P61 (v >es,)

n

glg

k=1 ':|-1'_mk|}55r-.}

Passing to the limit,

0= lime,,

Mmoo

1
=—limf@, (n)=0
— lm B,

1e the condition ,,L”’is satisfied.
For 7 = 1 is obtained exactly the formulation
of Lyapunov’s theorem directly demonstrated
previously.

If the the string of independent random
variables (X, ), =" are

H =M(lx, —m,|*) ke N

and 1f

lim E =0

e §

where
n 1/3

K, = ( Hﬂ:j
k=1

then

lim Fy (x) = ®(x),vx € R

3. THE MULTICRITERIAL ANALYSIS

In this part of the present article, the authors
have proposed to analyze the 9 theorems
presented in previous side from the point of
three ways.

We have the following variants:

- variant (a): the extent of which one applies
more frequently theorems

- variant (b): the difficulty to apply the 9*
theorems

- variant (c): the reliable of application of the
9™ theorems

9 criteria have been chosen:
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p—
.

Local theorem Moivre-Laplace [(1)]

Moivre-Laplace theorem [(2)]

Theorem [(3)]

Central limit theorem Lindeberg-Levy [(4)]

Lyapunov theorem [(5)]

Lindeberg-Feller theorem [(6)]

Consequence [(7)]

Consequence [(8)]

S I B T L R ol I

Lyapunov theorem [(9)]

Fig. 1
Based bet on score, weighting of the criteria
resulted as follows:

the considered element and the score
at the top level element; if the element
taken into account is the one located on
the top floor, results Ap with the value 0

m the number of outclassed criteria
(exceeded from terms of score) the by
the criteria taken into account

N, the number of considered criterion

Ap' the difference between the score of
the considered element and the score
of the first element (resulting with a
negative value); taken into account if
the item is located on the first level, Ap’
results with the value 0

) @I @ o (®) ©) (o (@) o) points | Level | ¥
(D] 12 1 0 12 0 0 0 0 0 2 8 0,2
()] 1 1/2 0 12 12 172 0 172 0 3,5 7,5 0,7
@3 |1 1 12 |12 o 12 |o 0 0 35 |75 |07
(D] 1 172 172 12 1 12 0 0 5 5 1,7
(S 172 0 172 1 1/2 172 12 12 172 4,5 6 1,4
[(6)] 12 12 0 1 1 1/2 12 12 1 5,5 4 2,2
(D] 1 1 172 172 12 1 1/2 1 172 6,5 3 3,1
[(®)] 1 1 1/2 12 1 1 12 12 1 7 2 3,9
(9] 1 12 172 1 1 1 1 1 12 7,5 1 4,7
Fig. 2 We obtain
2+(2-2)+0+05 25
It is noted that the main diagonal of the array ~ Y110 = 9 10 0,2
contains only quadratic criteria for scoring —(2-75)+3
1/2 values because no criteria may be more
important or less important than the criteria 35+(35-2)+1+4+05 65
itself. Yo = 3 = Y =07 =y
The ¥, weighting coefficients can be —(35-75)+3 J
calculated with different formulas. We chose
to use FRISCO practice formula (empirical 5+(5—2)+4+05 125
formula given by a renowned creative group (% g - 57 - U7
from San Francisco — US) that has been —(5-75) +3
recognized worldwide as being the most
performance and is long used. 45+ (45-2)+3+05 105
Therefore, with, ¥im ~ 9 ~ 75 14
—(45-75)+3 J
p+Adp+-m+0,5
‘ —a-p-'_ﬂm _55+(55-2)+5+05 145
2 Y = 5 =5 =2
where —(55-75)+3 J
. P isthe sum of points obtained (on line)
of the considered element o _ 65+ (65—2)+6+05 17,5 -

Ap the difference between the score of
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_7+(7-2)+7+05 195

¥ ()

9
—(7-75) +3

5

75+(7.5-2)+8+05 215

3,9

¥y =

According to the criteria were the

—(75—-75) + %

following notes for each variant ..

4,5

L

It may take into account different weight
now and consequence of each criterion,
complementing and enhancing the table above
notes (lines) with the coefficient of importance:

Variant (a) | Variant (b) | Variant (c)

Criteria N, N; N;

) 10 3 9
(2) 5 2 6
A3) 2 9 4
4) 9 6 5
Q) 7 4 8
6) 6 10 7
(@) 4 7 3
(¢ 3 8 2
(&) 8 5 10

Fig. 3

4. CONCLUSIONS

Multicriterial analysis technique is useful
in the composition of an ranking, while
qualitatively and quantitatively, of product
variants, objects, methods, models, equipment,
structures, creations, etc. A first valence would
be that the result of such analysis in order not
only put options, but it quantifies in value terms.

Rankings, to a large extent, have a high
degree of subjectivity and aims the most of the
time only the qualitative aspect. Multicriterial
analysis technique gives, from the viewpoint of
its user, results found to a great extent objectives
(ie, this technique objectifies in an important
measure the results).

It is noted that after the ranking did, the
approximation theorems studied in this paper
are preferred to be taken in the variant (b).

We want to emphasize that point III is
our own creation. Efforts have been made to
develop this multicriterial analysis applied to
approximation theorems studied in this paper,
hoping that we will develop it in the future.

Variant (a) Variant (b) Variant (¢)

Criteria ¥: N; N; Xy, N; N; Xy, N; N; Xy,
4)) 0,2 10 2 3 0,6 9 1,8
2) 0,7 5 3,5 2 1.4 6 4,2
3 0,7 2 1,4 9 6,3 4 2,8
“) 1,7 9 15,3 6 10,2 5 8,5
Q) 1,4 7 9,8 4 5,5 8 11,2
(6) 2,2 6 13,2 10 22 7 15,4
@) 3,1 4 12,4 7 21,7 3 9,3
®) 3,9 3 11,7 8 31,2 2 7,8
9 4,7 8 37,6 5 23,5 10 47

Final ranking 106,9 122,5 108

Fig. 4
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