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Abstract This article points out the properties that the Bernstein polynomials have, related to 

the approximation of the derivable functions and their convergence, together with the elegant 

results obtained through problem solving. A continuous function with its first k derivatives is 

considered on the interval ),( ba  and it is proven that the Bernstein polynomial arrays );( xfBn , 

);(' xfB n ,…, );()( xfB k
n tend absolutely and uniformly towards the functions )(xf , )(' xf ,..., 

)()( xf k
 respectively, on the entire ),( ba interval.  
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1. INTRODUCTION 

 

Let )(xf  be a continuous function on the ),( ba . We divide the interval ),( ba  in n 

equal parts and we get:  
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  (1) 

 Division points, where ni ,...,1,0 , with ax 0 ; bxn  . 

 An n degree polynomial whose coefficients depend linearly and homogenously on the 

(n+1) values )( ixf  with ni ,0  is called an n degree interpolation polynomial of 

the )(xf  function.   

 We note with  
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     The Bernstein interpolation polynomial. 

Also, the oscillation module of the f function is defined by  

)''()'(max)( xfxf   (3) 

Where 'x  and ''x  are two ordinary points of the ),( ba  interval with the property  

      

 ''' xx , where   ab  ,0  (4) 

 

     We mark the divided difference by the order )1( k of the f function in the points 

kxxx ,...,, 21  with 
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As being the relation between the two determinants: );,...,,( 21 fxxxU k being the 

determinant obtained from the Vandermonde determinant of ),...,,( 21 kxxxV  of the 

numbers kxxx ,...,, 21 , replacing the last respective column with the elements 

)(),...,(),( 21 kxfxfxf  and the determinant ),...,,( 21 kxxxV .  

We note  fxxxD kk ;,...,, 21  the difference divided by the )1( k order of the )(xf  

function. 

We note with 
),(

121 ];,...,,[max][
ba

nn fxxxfD   the limit of the n order of the 

f function in ),( ba interval, where 121 ,...,, nxxx  are )1( n  random distinct points of 

the ),( ba interval. 

If f  admits a bounded derivative of an )1( n order and if we note with  ][ )1(
0

nfD  

the maximum or the superior limit of )1( nf  in the interval ),( ba  we have 

][)!1(][ 1
)1(

0 fDnfD n
n


   (6) 

 

2. THE APPROXIMATION OF THE DERIVATIVE FUNCTIONS 

Let’s assume that the f  function has a continuous derivative of k order and let )(k  

be the oscillation module of this derivative.  

It is known that we have the generalized mean formula: 

10,)(! )( 
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where  fxxxD kiii
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     In the following, we consider the polynomial: 
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     We have 
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     Where s  is determined as follows:  
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     If in these formulae we have 0s  or kns  , either the first or the second member 

in the second parenthesis of the (10) relation disappears.  

     We notice that  

n

abk
xxxxxxxx iikiiki

)( 
   (14) 

 


k

kn

i

ikni

i

i

knknkn

k xxbaxxxC
ab

xfQf 



















 








1)()()(

)(

11
);(

0

,

)(   (15) 

Where 
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     And we must consider 0)(  x  if kns  . 

     Let’s further notice that  
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     That results from the relation  
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     It is known that 
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     On the other hand  
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     In these conditions we write:  
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     We obviously obtain for the function )(x  the inequality: 
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     Thus resulting in:  
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     We consider 
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3. THE CONVERGENCE OF BERNSTEIN POLYNOMIALS DERIVATIVES 

If  fxxxD kiii
i
k ;,...,, 1  , kni  ,...,1,0 , ,...2,1k  a simple calculus shows that  














1

0

1

111

)( )()(
)(

1);(
);(

n

i

iniii

nn

nk

n xbaxDC
abdx

xfdB
xfB  (25) 

     And generally:  
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     As the derivative of a k order of function f  is supposed to be continuous, the superior 

border ][ )(
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kfD  is then finite.  
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     How  
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     Taking into consideration the relation (24), we deduce: 
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     This shows that:  

     If function f , definite in the interval ),( ba , is continuous together with its first k 

derivatives, the polynomial arrays );( xfBn , );(' xfB n ,…, );()( xfB k
n  tend absolutely and 

uniformly towards )(xf , )(' xf ,..., )()( xf k
 respectively, on the entire ),( ba  interval. 
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