THE APPROXIMATION OF A CONTINUOUS FUNCTION USING BERNSTEIN POLYNOMIALS

Florența Violeta TRIPŞA
"Transilvania" University, Braşov, Romania (florentatripsa @ yahoo.com)

DOI: 10.19062/2247-3173.2018.20.39

Abstract

The purpose of this article is to prove the Weierstrass theorem that relates to the limit of a convergent uniform polynomial array, in an (a, b) interval, using Bernstein polynomials. The first part of the paper briefly mentions notions connected to the best approximation of an f function given by the P_{n} polynomials. It is proven and concluded somehow geometrically, the form of the interpolating Bernstein polynomial $B_{n}(x ; f)$, and with the help of the oscillation mode $\omega(\delta)$ of the f function, the superior limit of the difference $\left|f(x)-B_{n}(x ; f)\right|$ is determined. The final part of the paper points out the best approximation given by the $B_{n}(x ; f)$ polynomials for continuous functions, which close the Weierstrass theorem demonstration.

Keywords: approximation, polynomials, functions, continuity, boundedness

1. INTRODUCTION

If a $f(x)$ function is given, we will say, by definition, that the distance $M(|f-P|)$ between this function and a $P(x)$ polynomial is the error or the approximation where $P(x)$ represents $f(x)$.

For all n degree polynomials, $M(f-P \mid)$ has an $\mu_{n}(f)$ inferior margin, which represents the best approximation of the $f(x)$ function using n degree polynomials.

The problem of the best approximation is the following:
If a $f(x)$ is given, then the n degree polynomials are determined for which $M(|f-P|)$ that reaches its inferior margin $\mu_{n}(f)$ and this number is studied.

A $P(x)$ polynomial of n degree for which $\mu_{n}(f)$ is reached will be called the best approximation polynomial of n degree of the $f(x)$ function.

2. WEIERSTRASS THEOREM

Any continuous function on the (a, b) interval is the limit of a uniformly convergent array of polynomials in this interval.

From this theorem we could get $\lim _{n \rightarrow \infty+} \mu_{n}(f)=0$ if the function f is continuous.
It is obvious that for any function f we have the following inequalities $\mu_{0} \geq \mu_{1} \geq \ldots \geq \mu_{n} \geq \ldots$

So the limit
$\lim _{n \rightarrow \infty+} \mu_{n}(f)=\mu$
Exists and it is higher or equal to zero.
If $\mu=0$, the polynomial array P_{n} converges absolutely and uniformly in the (a, b) interval. For a discontinuous function the result is $\mu \neq 0$.

Weierstrass' theorem states that for a continuous function we definitely have $\mu=0$.
The important issue would be to prove the relation directly, based solely on the P_{n} polynomials properties.

Before proving the Weierstrass theorem, we state Tonelli' theorem, where the P_{n} polynomial is noted T_{n}.

Tonelli's Theorem

If the polynomial array $T_{0}(x ; f), T_{1}(x ; f), \ldots, T_{n}(x ; f), \ldots$ converges absolutely and uniformly towards a continuous function, this function coincides with $f(x)$.

We assume that the polynomial array $T_{0}(x ; f), T_{1}(x ; f), \ldots, T_{n}(x ; f), \ldots$

Converges uniformly towards a continuous function $F(x)$ and that we have $\mu>0$, then:
$M(|f-F|) \leq M\left(\mid f-T_{n}\right)+M\left(\left|F-T_{n}\right|\right) \leq \mu_{n}+M\left(\left|F-T_{n}\right|\right)$
We easily deduce that
$M(|f-F|) \leq \mu_{n}$
As $f-F$ is a continuous function, to determine a $\delta>0$ in any $\leq \delta$ length interval, the oscillation of this function has to be smaller than μ.

On the other hand, we can find a number $n>\frac{b-a}{\delta}$ so that we have
$M\left(\left|F-T_{n}\right|\right)<\varepsilon<\frac{\mu}{2}$
We know that there are $n+2$ points for which $\pm \mu_{n}$ is alternatively reached and, from the way n was reached, $n>\frac{b-a}{\delta}$, the resultant is the existence, among $n+2$ points, at least 2 points x^{\prime} and $x^{\prime \prime}$ so that
$\left|x^{\prime}-x^{\prime \prime}\right|<\delta$,
$f\left(x^{\prime}\right)-T_{n}\left(x^{\prime}\right)=\mu_{n}$
$f\left(x^{\prime \prime}\right)-T_{n}\left(x^{\prime \prime}\right)=-\mu_{n}$
Where

$$
\begin{aligned}
& f\left(x^{\prime}\right)-F\left(x^{\prime}\right)=\left(f\left(x^{\prime}\right)-T_{n}\left(x^{\prime}\right)\right)+\left(T_{n}\left(x^{\prime}\right)-F\left(x^{\prime}\right)\right)>\mu_{n}-\varepsilon \geq \mu-\varepsilon>+\frac{\mu}{2} \\
& f\left(x^{\prime \prime}\right)-F\left(x^{\prime \prime}\right)=\left(f\left(x^{\prime \prime}\right)-T_{n}\left(x^{\prime \prime}\right)\right)+\left(T_{n}\left(x^{\prime \prime}\right)-F\left(x^{\prime \prime}\right)\right)>-\mu_{n}+\varepsilon \geq-\mu+\varepsilon>-\frac{\mu}{2}
\end{aligned}
$$

The result is that the oscillation of the $f-F$ function in the ($x^{\prime} ; x^{\prime \prime}$) interval is higher than μ, which is impossible. The hypothesis $\mu>0$ is wrong. As a result, we must have $\mu=0$ and then F coincides with f.

3. BERNSTEIN POLYNOMIALS

The purpose is to demonstrate the Weierstrass theorem using Bernstein polynomials.

The definition of Bernstein polynomials

We consider the interval (a, b), with $a<b, a, b \in \mathbf{R}$ which we divide in n equal parts and let
$x_{i}=a+i \cdot \frac{b-a}{n}, \quad i=0,1,2, \ldots, n$
Where $x_{0}=a, x_{n}=b$.

The definition of the interpolation polynomial

An n degree polynomial whose coefficients depend in a linear and homogenous way on the $(n+1)$ values $f\left(x_{i}\right), i=0,1,2, \ldots, n$ is called an interpolation polynomial of n degree of the $f(x)$ function.

The purpose is to particularly study the Bernstein interpolation polynomial:
$B_{n}(x ; f)=\frac{1}{(b-a)^{n}} \sum_{i=0}^{n} C_{n}^{i} f\left(x_{i}\right)(x-a)^{i}(b-x)^{n-i}$

3.1. A geometrical determination of the Bernstein polynomials

It is interesting to see how these Bernstein polynomials can be obtained in a rather geometrical way.

Let $X_{0}, X_{1}, \ldots, X_{n}$ be the representative points of the $f(x)$ function for $x=x_{0}, x_{1}, \ldots, x_{n}$, where $x_{0}=a, x_{n}=b$, that is the coordinate points $X_{i}\left(x_{i}, f\left(x_{i}\right)\right)$, $i=0,1,2, \ldots, n$.

Let's build the polygonal line $X_{0} X_{1} \ldots X_{n}$.
We consider on the sides $X_{0} X_{1}, X_{1} X_{2}, \ldots, X_{n-1} X_{n}$ of the polygonal line the points $X_{0}^{\prime}, X_{1}^{\prime}, \ldots, X^{\prime}{ }_{n-1}$ that divide the sides in the same direction and in the same proportion, so that we can write
$X_{0} X_{0}^{\prime}=X_{1} X_{1}^{\prime}=X_{2} X^{\prime}{ }_{2}=\ldots=X_{n-1} X^{\prime}{ }_{n-1}=\frac{k}{n} \cdot \frac{b-a}{n}$
Where k is considered an integer, $0 \leq k \leq n$.

On the polygonal line $X_{0}^{\prime} X_{1}^{\prime} \ldots X^{\prime}{ }_{n-1}$ we mark the polygonal line $X{ }^{\prime}{ }_{0} X^{\prime \prime}{ }_{1} \ldots X^{\prime \prime}{ }_{n-2}$ in the same way, keeping the direction and the proportion of side division, therefore obtaining:

$$
X_{0}^{\prime} X^{\prime \prime}{ }_{0}=X_{1}^{\prime} X^{\prime \prime}{ }_{1}=X_{2}^{\prime} X^{\prime \prime}{ }_{2}=\ldots=X_{n-2}^{\prime} X^{\prime \prime}{ }_{n-2}=\frac{k}{n} \cdot \frac{b-a}{n}
$$

To continue this procedure, we mark the polygonal lines consecutively
$X_{0}^{(k)} X_{1}^{(k)} \ldots X_{n-k}^{(k)}, k=3,4, \ldots, n$
The last polygonal line is reduced to a point, that is $X_{0}^{(n)}$.
Therefore, we obtain the equality:
$X_{0} X^{\prime}{ }_{0}=X^{\prime}{ }_{0} X^{\prime \prime}{ }_{0}=\ldots=X_{0}^{(n-1)} X_{0}^{(n)}=\frac{k}{n} \cdot \frac{b-a}{n}$
Thus the abscissa of $X_{0}^{(n)}$ point is
$x_{k}=a+k \cdot \frac{b-a}{n}$
We note the $X_{0}^{(n)}$ point with X_{k}^{*} to be able to point out the number k and to calculate X_{k}^{*} 's ordinate.

We notice that if $i=0, X_{i}$ point coincides with X_{0}, respectively with X_{n}.
We note, generally, with y_{k} the ordinate of X_{k} point, with $y_{r}^{(s)}$ the ordinate of $X_{r}^{(s)}$ and with y_{k}^{*} the ordinate of X_{k}^{*}.

We have
$y_{r}^{(s)}=\frac{(n-k) \cdot y_{r}^{(s-1)}+k \cdot y_{r+1}^{(s-1)}}{n}, r=0,1, \ldots, n-s$ and $s=1,2, \ldots, n-1$
$y_{r}^{*}=\frac{(n-k) \cdot y_{0}^{(n-1)}+k \cdot y_{1}^{(n-1)}}{n}$.
From the first relation we consecutively deduce that
$y_{r}^{(1)}=\frac{(n-k) \cdot y_{r}+k \cdot y_{r+1}}{n}$
$y_{r}^{(2)}=\frac{(n-k) \cdot y_{r}^{(1)}+k \cdot y_{r+1}^{(1)}}{n}=\frac{(n-k)^{2}+2 k(n-k) \cdot y_{r+1}+k^{2} \cdot y_{r+2}}{n^{2}}$
And generally
$y_{r}^{(s)}=\frac{1}{n^{s}} \sum_{i=0}^{s} C_{s}^{i} \cdot k^{i}(n-k)^{s-i} y_{r+i} ; r=0,1, \ldots, n-s$.
$y_{k}^{*}=\frac{1}{n^{n}} \sum_{i=0}^{n} C_{n}^{i} \cdot k^{i}(n-k)^{n-i} y_{i}$
Coming back to the $B_{n}(x ; f)$ polynomial we observe that
$B_{n}\left(a+k \cdot \frac{b-a}{n} ; f\right)=\frac{1}{n^{2}} \sum_{i=0}^{n} C_{n}^{i} \cdot k^{i}(n-k)^{n-i} f\left(x_{i}\right)$
Thus the Bernstein polynomial $B_{n}(x ; f)$ is Lagrange's polynomial that takes the y_{k}^{*} values in x_{k} point.

3.2.Determining a superior limit for $\left|f(x)-B_{n}(x ; f)\right|$

The definition of the oscillation mode $\omega(\delta)$ of a f function
Let f be a continuous function on the (a, b) interval with $a<b, a, b \in \mathbf{R}$.
The oscillation mode of the f function is a δ function that, by definition, is given by the relation:
$\omega(\delta) \stackrel{\text { def }}{=} \max \left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|$
where x^{\prime} and $x^{\prime \prime}$ are two points of the (a, b) interval so that $\left|x^{\prime}-x^{\prime \prime}\right| \leq \delta$.
Observations
a) $\omega(\delta)$ is a definite function for $0<\delta \leq b-a$, non-decreasing and non-negative;
b) We have the inequality: $\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right| \leq \omega\left(x^{\prime}-x^{\prime \prime} \mid\right)$

Statement

The necessary and sufficient condition for f to be continuous is that $\omega(\delta) \rightarrow 0$ for $\delta \rightarrow 0$.

The following observations concerning the statement above are made:
i. For $\varepsilon>0$ there are two x^{\prime} and $x^{\prime \prime}$ points in the (a, b) interval with $x^{\prime}<x^{\prime \prime}$ so that $\left|x^{\prime}-x^{\prime \prime}\right| \leq \delta$ And $\omega(\delta)-\varepsilon<\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|$
ii. If we divide the interval $\left(x^{\prime}, x^{\prime \prime}\right)$ in k equal parts in the points $x^{\prime}=x_{0} ; x_{1} ; \ldots ; x_{k-1}$;
$x_{k}=x^{\prime \prime}$ we get
$f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)=\sum_{i=1}^{k}\left(f\left(x_{i}\right)-f\left(x_{i+1}\right)\right)$
Where
$\left|f\left(x^{\prime}\right)-f\left(x^{\prime}\right)\right| \leq k \cdot \omega\left(\frac{\delta}{k}\right)$
So
$\omega(\delta)<k \omega\left(\frac{\delta}{k}\right)+\varepsilon$
Whatever ε, and k being a positive integer.
Placing $k \cdot \delta$ instead of δ we get
$\omega(k \delta)<k \omega(\delta)+\varepsilon<(k+1) \omega(\delta)$
Whatever the positive k number so that $\delta \leq b-a$ and $k \delta \leq b-a$.
Therefore we obtain for $\delta \leq b-a$
$\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|<\left[\frac{\left|x^{\prime}-x^{\prime \prime}\right|}{\delta}+1\right] \omega(\delta)$
Thus, the necessary and sufficient condition for f to be continuous is that $\omega(\delta) \rightarrow 0$ for $\delta \rightarrow 0$.

To continue, we plan, with the help of the oscillation module $\omega(\delta)$ to determine the superior limit for $\left|f(x)-B_{n}(x ; f)\right|$.

Let's notice that $B_{n}(x ; 1)=1$, thus resulting:

$$
\begin{aligned}
\left|f(x)-B_{n}(x ; f)\right| & =\left|\frac{1}{(b-a)^{n}} \cdot \sum_{i=0}^{n} C_{n}^{i}\left(f(x)-f\left(x_{i}\right)\right) \cdot(x-a)^{i}(b-x)^{n-i}\right| \leq \\
& \leq \frac{1}{(b-a)^{n}} \cdot \sum_{i=0}^{n} C_{n}^{i} \omega\left(\left|x-x_{i}\right|\right) \cdot(x-a)^{i}(b-x)^{n-i}< \\
& <\left\{\frac{1}{\delta} \cdot \frac{1}{(b-a)^{n}} \cdot \sum_{i=0}^{n} C_{n}^{i}\left|x-x_{i}\right| \cdot(x-a)^{i}(b-x)^{n-i}+1\right\} \cdot \omega(\delta)
\end{aligned}
$$

If we consider:

$$
\Psi(x)=\frac{1}{(b-a)^{n}} \cdot \sum_{i=0}^{n} C_{n}^{i}\left|x-x_{i}\right| \cdot(x-a)^{i}(b-x)^{n-i}
$$

and
$N_{n}=\max _{x \in(a, b)} \Psi(x)$
and
$\delta=2 N_{n}$, we determine a superior limit for $\left|f(x)-B_{n}(x ; f)\right|$ as:
$\left|f(x)-B_{n}(x ; f)\right|<\frac{3}{2} \omega\left(2 N_{n}\right)$,
for $\delta \leq b-a$.

3.3.The approximation given by the $B_{n}(x ; f)$ polynomial

We can calculate the approximation given by the $B_{n}(x ; f)$ polynomials.
Let's process first the function $\Psi(x)$.
In the $\left(x_{j}, x_{j+1}\right)$ interval, we have:

$$
\begin{aligned}
\Psi(x)= & \frac{1}{(b-a)^{n}} \cdot \sum_{i=0}^{j} C_{n}^{i}\left(x-x_{i}\right) \cdot(x-a)^{i}(b-x)^{n-i}+ \\
& +\frac{1}{(b-a)^{n}} \cdot \sum_{i=j+1}^{n} C_{n}^{i}\left(x_{i}-x\right) \cdot(x-a)^{i}(b-x)^{n-i}= \\
= & \frac{2}{(b-a)^{n}} \cdot \sum_{i=0}^{j} C_{n}^{i}\left(x-x_{i}\right) \cdot(x-a)^{i}(b-x)^{n-i}
\end{aligned}
$$

Because it can be easily checked that:

$$
\sum_{i=0}^{n} C_{n}^{i}\left(x_{i}-x\right) \cdot(x-a)^{i}(b-x)^{n-i}=0
$$

By doing the calculus, we find that
$\Psi(x)=\frac{2}{(b-a)^{n}} \cdot C_{n-1}^{j}(x-a)^{j+1}(b-x)^{n-j}$
The maximum of the polynomial in the $\left(x_{j}, x_{j+1}\right)$ interval is reached for $x^{*}=\frac{(j+1) b+(n-j) a}{n+1}$

And it has as value
$\Psi\left(x^{*}\right)=2(b-a) C_{n-1}^{j} \frac{(j+1)^{j+1} \cdot(n-j)^{n-j}}{(n+1)^{n+1}}=2(b-a) \cdot \lambda_{j}$

Where $\lambda_{j}=C_{n-1}^{j} \frac{(j+1)^{j+1} \cdot(n-j)^{n-j}}{(n+1)^{n+1}}$.
The following observation is useful
As the function $\left(\frac{x+1}{x}\right)^{x+1}$ is decreasing for $x \geq 1$, thus we have:
$\left(\frac{j+2}{j+1}\right)^{j+2}>\left(\frac{n-j}{n-j-1}\right)^{n-j}$
for $n>\frac{j+1}{2}$ or $\lambda_{j+1}>\lambda_{j}$.
Hence the function $\Psi\left(x^{*}\right)$ reaches its maximum for $j=\frac{n}{2}$ or $j=\frac{n-1}{2}$ if n is odd or even.

Thus, we have
$N_{n}=2(b-a) C_{n-1}^{n / 2} \frac{\left(\frac{n}{2}+1\right)^{\frac{n}{2}+1}\left(\frac{n}{2}\right)^{\frac{n}{2}}}{(n+1)^{n+1}}$ for n even
$N_{n}=\frac{(b-a)}{2^{n}} C_{n-1}^{n-1 / 2}$ for n odd.
It is proven that
$\sqrt{2 n-1} \cdot N_{2 n-1}>\sqrt{2 n+1} \cdot N_{2 n+1}$
$N_{1}=\frac{(b-a)}{2}, N_{3}=\frac{(b-a)}{4}$
where
$N_{2 n+1}<\frac{b-a}{2 \sqrt{2 n+1}}$
$N_{2 n+1} \leq \frac{\sqrt{3}(b-a)}{4 \sqrt{2 n+1}}$
for $n \geq 1$.
For n even, we have

$$
\begin{aligned}
N_{2 n} & =N_{2 n+1} \frac{(n+1)^{n+1} n^{n}}{(2 n+1)^{2 n+1}} 2^{2 n+1}<N_{2 n+1} \frac{2^{2 n+1}(n+1)}{(2 n+1)^{2 n+1}}\left(\frac{2 n+1}{2}\right)^{2 n}= \\
& =N_{2 n+1} \frac{2(n+1)}{2 n+1} \leq \frac{\sqrt{3}(b-a)}{4 \sqrt{2 n+1}} \cdot \frac{2(n+1)}{2 n+1}=\frac{1}{2} \cdot \frac{\sqrt{3}(n+1)(a-b)}{(2 n+1) \sqrt{2 n+1}}<\frac{b-a}{2 \sqrt{2 n}}
\end{aligned}
$$

So generally
$N_{n} \leq \frac{b-a}{2 \sqrt{n}}$

The relation becomes
$\left|f(x)-B_{n}(x ; f)\right|<\frac{3}{2} \omega\left(\frac{b-a}{\sqrt{n}}\right)$

If the function f is continuous $\omega\left(\frac{b-a}{\sqrt{n}}\right) \rightarrow 0$ for $n \rightarrow \infty$, Weierstrass theorem is demonstrated as well. Moreover, the best approximation of a continuous function is seen using n degree polynomials, that is μ_{n}, is at least of $\omega\left(\frac{b-a}{\sqrt{n}}\right)$ degree.

REFERENCES

[1] T. Popoviciu, Sur l'aproximation des functions convexes d'ordre superieur, Mathematica (Cluj) 1935;
[2] L. Lupaș, A. Lupaș, Polynomials of binomial type and approximation operators, Studia Universitatea Babeș-Bolyai Mathematica (1987)
[3] D.D. Stancu, Approximation of functions by a new class of linear polynomial operators, Revista Roumanie Math Pures et Application (1968)

