THE APPROXIMATION OF A CONTINUOUS FUNCTION USING BERNSTEIN POLYNOMIALS

Florența Violeta TRIPȘA

"Transilvania" University, Braşov, Romania (florentatripsa@yahoo.com)

DOI: 10.19062/2247-3173.2018.20.39

Abstract: The purpose of this article is to prove the Weierstrass theorem that relates to the limit of a convergent uniform polynomial array, in an (a,b) interval, using Bernstein polynomials. The first part of the paper briefly mentions notions connected to the best approximation of an f function given by the P_n polynomials. It is proven and concluded somehow geometrically, the form of the interpolating Bernstein polynomial $B_n(x; f)$, and with the help of the oscillation mode $\omega(\delta)$ of the f function, the superior limit of the difference $|f(x) - B_n(x; f)|$ is determined. The final part of the paper points out the best approximation given by the $B_n(x; f)$ polynomials for continuous functions, which close the Weierstrass theorem demonstration.

Keywords: approximation, polynomials, functions, continuity, boundedness

1. INTRODUCTION

If a f(x) function is given, we will say, by definition, that the distance M(|f - P|) between this function and a P(x) polynomial is the error or the approximation where P(x) represents f(x).

For all *n* degree polynomials, M(|f - P|) has an $\mu_n(f)$ inferior margin, which represents the best approximation of the f(x) function using *n* degree polynomials.

The problem of the best approximation is the following:

If a f(x) is given, then the *n* degree polynomials are determined for which M(|f - P|) that reaches its inferior margin $\mu_n(f)$ and this number is studied.

A P(x) polynomial of *n* degree for which $\mu_n(f)$ is reached will be called the best approximation polynomial of *n* degree of the f(x) function.

2. WEIERSTRASS THEOREM

Any continuous function on the (a,b) interval is the limit of a uniformly convergent array of polynomials in this interval.

From this theorem we could get $\lim_{n \to \infty} \mu_n(f) = 0$ if the function f is continuous.

It is obvious that for any function *f* we have the following inequalities $\mu_0 \ge \mu_1 \ge ... \ge \mu_n \ge ...$

So the limit

 $\lim_{n \to \infty^+} \mu_n(f) = \mu$

Exists and it is higher or equal to zero.

If $\mu = 0$, the polynomial array P_n converges absolutely and uniformly in the (a,b) interval. For a discontinuous function the result is $\mu \neq 0$.

Weierstrass' theorem states that for a continuous function we definitely have $\mu = 0$.

The important issue would be to prove the relation directly, based solely on the P_n polynomials properties.

Before proving the Weierstrass theorem, we state Tonelli' theorem, where the P_n polynomial is noted T_n .

Tonelli's Theorem

If the polynomial array $T_0(x; f), T_1(x; f), \dots, T_n(x; f), \dots$ converges absolutely and uniformly towards a continuous function, this function coincides with f(x).

We assume that the polynomial array

 $T_0(x; f), T_1(x; f), \dots, T_n(x; f), \dots$

Converges uniformly towards a continuous function F(x) and that we have $\mu > 0$, then:

$$M([f-F]) \le M([f-T_n]) + M([F-T_n]) \le \mu_n + M([F-T_n])$$

We easily deduce that

We easily deduce that $M(|f - F|) \le \mu_n$

As f - F is a continuous function, to determine a $\delta > 0$ in any $\leq \delta$ length interval, the oscillation of this function has to be smaller than μ .

On the other hand, we can find a number $n > \frac{b-a}{\delta}$ so that we have

$$M(|F-T_n|) < \varepsilon < \frac{\mu}{2}$$

We know that there are n+2 points for which $\pm \mu_n$ is alternatively reached and, from the way *n* was reached, $n > \frac{b-a}{\delta}$, the resultant is the existence, among n+2 points, at least 2 points *x*' and *x*'' so that $|x'-x''| < \delta$,

$$f(x') - T_n(x') = \mu_n$$

 $f(x'') - T_n(x'') = -\mu_n$

Where

$$f(x') - F(x') = (f(x') - T_n(x')) + (T_n(x') - F(x')) > \mu_n - \varepsilon \ge \mu - \varepsilon > + \frac{\mu}{2}$$

$$f(x'') - F(x'') = (f(x'') - T_n(x'')) + (T_n(x'') - F(x'')) > -\mu_n + \varepsilon \ge -\mu + \varepsilon > -\frac{\mu}{2}$$

The result is that the oscillation of the f - F function in the (x'; x'') interval is higher than μ , which is impossible. The hypothesis $\mu > 0$ is wrong. As a result, we must have $\mu = 0$ and then *F* coincides with *f*.

3. BERNSTEIN POLYNOMIALS

The purpose is to demonstrate the Weierstrass theorem using Bernstein polynomials.

The definition of Bernstein polynomials

We consider the interval (a,b), with a < b, $a, b \in \mathbf{R}$ which we divide in *n* equal parts and let

$$x_i = a + i \cdot \frac{b - a}{n}, \quad i = 0, 1, 2, ..., n$$

Where $x_0 = a, x_n = b$.

The definition of the interpolation polynomial

An *n* degree polynomial whose coefficients depend in a linear and homogenous way on the (n+1) values $f(x_i)$, i = 0, 1, 2, ..., n is called an interpolation polynomial of *n* degree of the f(x) function.

The purpose is to particularly study the Bernstein interpolation polynomial:

$$B_n(x;f) = \frac{1}{(b-a)^n} \sum_{i=0}^n C_n^i f(x_i) (x-a)^i (b-x)^{n-i}$$

3.1.A geometrical determination of the Bernstein polynomials

It is interesting to see how these Bernstein polynomials can be obtained in a rather geometrical way.

Let $X_0, X_1, ..., X_n$ be the representative points of the f(x) function for $x = x_0, x_1, ..., x_n$, where $x_0 = a$, $x_n = b$, that is the coordinate points $X_i(x_i, f(x_i))$, i = 0, 1, 2, ..., n.

Let's build the polygonal line $X_0X_1...X_n$.

We consider on the sides $X_0X_1, X_1X_2, ..., X_{n-1}X_n$ of the polygonal line the points $X'_0, X'_1, ..., X'_{n-1}$ that divide the sides in the same direction and in the same proportion, so that we can write

$$X_0 X'_0 = X_1 X'_1 = X_2 X'_2 = \dots = X_{n-1} X'_{n-1} = \frac{k}{n} \cdot \frac{b-a}{n}$$

Where *k* is considered an integer, $0 \le k \le n$.

On the polygonal line $X'_0 X'_1 ... X'_{n-1}$ we mark the polygonal line $X''_0 X''_1 ... X''_{n-2}$ in the same way, keeping the direction and the proportion of side division, therefore obtaining:

$$X'_{0} X''_{0} = X'_{1} X''_{1} = X'_{2} X''_{2} = \dots = X'_{n-2} X''_{n-2} = \frac{k}{n} \cdot \frac{b-a}{n}$$

To continue this procedure, we mark the polygonal lines consecutively $X_0^{(k)} X_1^{(k)} \dots X_{n-k}^{(k)}$, $k = 3,4,\dots,n$

The last polygonal line is reduced to a point, that is $X_0^{(n)}$.

Therefore, we obtain the equality: k = b

$$X_0 X'_0 = X'_0 X''_0 = \dots = X_0^{(n-1)} X_0^{(n)} = \frac{\kappa}{n} \cdot \frac{b-a}{n}$$

Thus the abscissa of $X_0^{(n)}$ point is

 $x_k = a + k \cdot \frac{b - a}{n}$

We note the $X_0^{(n)}$ point with X_k^* to be able to point out the number k and to calculate X_k^* 's ordinate.

We notice that if i = 0, X_i point coincides with X_0 , respectively with X_n .

We note, generally, with y_k the ordinate of X_k point, with $y_r^{(s)}$ the ordinate of $X_r^{(s)}$ and with y_k^* the ordinate of X_k^* .

We have

$$y_r^{(s)} = \frac{(n-k) \cdot y_r^{(s-1)} + k \cdot y_{r+1}^{(s-1)}}{n}, r = 0, 1, \dots, n-s \text{ and } s = 1, 2, \dots, n-1$$
$$y_r^* = \frac{(n-k) \cdot y_0^{(n-1)} + k \cdot y_1^{(n-1)}}{n}.$$

From the first relation we consecutively deduce that

$$y_r^{(1)} = \frac{(n-k) \cdot y_r + k \cdot y_{r+1}}{n}$$
$$y_r^{(2)} = \frac{(n-k) \cdot y_r^{(1)} + k \cdot y_{r+1}^{(1)}}{n} = \frac{(n-k)^2 + 2k(n-k) \cdot y_{r+1} + k^2 \cdot y_{r+2}}{n^2}$$

And generally

$$y_r^{(s)} = \frac{1}{n^s} \sum_{i=0}^s C_s^i \cdot k^i (n-k)^{s-i} y_{r+i}; r = 0, 1, ..., n-s.$$

$$y_k^* = \frac{1}{n^n} \sum_{i=0}^n C_n^i \cdot k^i (n-k)^{n-i} y_i$$

Coming back to the $B_n(x; f)$ polynomial we observe that

$$B_n(a+k\cdot\frac{b-a}{n};f) = \frac{1}{n^2}\sum_{i=0}^n C_n^i \cdot k^i (n-k)^{n-i} f(x_i)$$

Thus the Bernstein polynomial $B_n(x; f)$ is Lagrange's polynomial that takes the y_k^* values in x_k point.

3.2. Determining a superior limit for $|f(x) - B_n(x; f)|$

The definition of the oscillation mode $\omega(\delta)$ of a *f* function

Let *f* be a continuous function on the (a,b) interval with a < b, $a,b \in \mathbf{R}$.

The oscillation mode of the *f* function is a δ function that, by definition, is given by the relation:

 $\omega(\delta) \stackrel{\text{\tiny def}}{=} \max \left| f(x') - f(x'') \right|$

where x' and x'' are two points of the (a,b) interval so that $|x'-x'| \le \delta$.

Observations

- a) $\omega(\delta)$ is a definite function for $0 < \delta \le b a$, non-decreasing and non-negative;
- b) We have the inequality: $|f(x') f(x'')| \le \omega (|x'-x''|)$

<u>Statement</u>

The necessary and sufficient condition for f to be continuous is that $\omega(\delta) \rightarrow 0$ for $\delta \rightarrow 0$.

The following observations concerning the statement above are made:

i. For $\varepsilon > 0$ there are two x' and x'' points in the (a,b) interval with x' < x'' so that $|x'-x''| \le \delta$ And $\omega(\delta) - \varepsilon < |f(x') - f(x'')|$

ii. If we divide the interval (x', x'') in k equal parts in the points $x' = x_0; x_1; ...; x_{k-1}; x_k = x''$ we get

$$f(x') - f(x'') = \sum_{i=1}^{k} \left(f(x_i) - f(x_{i+1}) \right)$$

Where

$$|f(x') - f(x'')| \le k \cdot \omega \left(\frac{\delta}{k}\right)$$

So

$$\omega(\delta) < k\omega \left(\frac{\delta}{k}\right) + \varepsilon$$

Whatever ε , and k being a positive integer.

Placing $k \cdot \delta$ instead of δ we get

 $\omega(k\delta) < k\omega(\delta) + \varepsilon < (k+1)\omega(\delta)$

Whatever the positive k number so that $\delta \leq b - a$ and $k\delta \leq b - a$.

Therefore we obtain for $\delta \leq b - a$

$$|f(x') - f(x'')| < \left[\frac{|x'-x''|}{\delta} + 1\right] \omega(\delta)$$

Thus, the necessary and sufficient condition for f to be continuous is that $\omega(\delta) \to 0$ for $\delta \to 0$.

To continue, we plan, with the help of the oscillation module $\omega(\delta)$ to determine the superior limit for $|f(x) - B_n(x; f)|$.

Let's notice that $B_n(x;1) = 1$, thus resulting:

$$\begin{split} \left| f(x) - B_n(x; f) \right| &= \left| \frac{1}{(b-a)^n} \cdot \sum_{i=0}^n C_n^i (f(x) - f(x_i)) \cdot (x-a)^i (b-x)^{n-i} \right| \le \\ &\le \frac{1}{(b-a)^n} \cdot \sum_{i=0}^n C_n^i \omega (x-x_i) \cdot (x-a)^i (b-x)^{n-i} < \\ &< \left\{ \frac{1}{\delta} \cdot \frac{1}{(b-a)^n} \cdot \sum_{i=0}^n C_n^i |x-x_i| \cdot (x-a)^i (b-x)^{n-i} + 1 \right\} \cdot \omega(\delta) \end{split}$$

If we consider:

$$\Psi(x) = \frac{1}{(b-a)^n} \cdot \sum_{i=0}^n C_n^i |x-x_i| \cdot (x-a)^i (b-x)^{n-i}$$

and

 $N_n = \max_{x \in (a,b)} \Psi(x)$

and

 $\delta = 2N_n$, we determine a superior limit for $|f(x) - B_n(x; f)|$ as:

$$\left| f(x) - B_n(x; f) \right| < \frac{3}{2} \omega(2N_n),$$

for $\delta \le b - a$.

3.3. The approximation given by the $B_n(x; f)$ polynomial

We can calculate the approximation given by the $B_n(x; f)$ polynomials. Let's process first the function $\Psi(x)$.

In the (x_j, x_{j+1}) interval, we have:

$$\Psi(x) = \frac{1}{(b-a)^n} \cdot \sum_{i=0}^j C_n^i (x-x_i) \cdot (x-a)^i (b-x)^{n-i} + \frac{1}{(b-a)^n} \cdot \sum_{i=j+1}^n C_n^i (x_i-x) \cdot (x-a)^i (b-x)^{n-i} = \frac{2}{(b-a)^n} \cdot \sum_{i=0}^j C_n^i (x-x_i) \cdot (x-a)^i (b-x)^{n-i}$$

Because it can be easily checked that:

$$\sum_{i=0}^{n} C_{n}^{i} (x_{i} - x) \cdot (x - a)^{i} (b - x)^{n-i} = 0$$

By doing the calculus, we find that

$$\Psi(x) = \frac{2}{(b-a)^n} \cdot C_{n-1}^j (x-a)^{j+1} (b-x)^{n-j}$$

The maximum of the polynomial in the (x_j, x_{j+1}) interval is reached for

$$x^{*} = \frac{(j+1)b + (n-j)a}{n+1}$$

And it has as value

$$\Psi(x^*) = 2(b-a)C_{n-1}^{j} \frac{(j+1)^{j+1} \cdot (n-j)^{n-j}}{(n+1)^{n+1}} = 2(b-a) \cdot \lambda_j$$

Where
$$\lambda_j = C_{n-1}^j \frac{(j+1)^{j+1} \cdot (n-j)^{n-j}}{(n+1)^{n+1}}$$

The following observation is useful

As the function $\left(\frac{x+1}{x}\right)^{x+1}$ is decreasing for $x \ge 1$, thus we have: $\left(\frac{j+2}{j+1}\right)^{j+2} > \left(\frac{n-j}{n-j-1}\right)^{n-j}$ for $n > \frac{j+1}{2}$ or $\lambda_{j+1} > \lambda_j$.

Hence the function $\Psi(x^*)$ reaches its maximum for $j = \frac{n}{2}$ or $j = \frac{n-1}{2}$ if *n* is odd or even.

Thus, we have

$$N_{n} = 2(b-a)C_{n-1}^{n/2} \frac{\left(\frac{n}{2}+1\right)^{\frac{n}{2}+1} \left(\frac{n}{2}\right)^{\frac{n}{2}}}{(n+1)^{n+1}} \text{ for } n \text{ even}$$

$$N_{n} = \frac{(b-a)}{2^{n}}C_{n-1}^{n-1/2} \text{ for } n \text{ odd.}$$
It is proven that
$$\sqrt{2n-1} \cdot N_{2n-1} > \sqrt{2n+1} \cdot N_{2n+1}$$

$$N_{1} = \frac{(b-a)}{2}, N_{3} = \frac{(b-a)}{4}$$
where

where

$$N_{2n+1} < \frac{b-a}{2\sqrt{2n+1}}$$
$$N_{2n+1} \le \frac{\sqrt{3}(b-a)}{4\sqrt{2n+1}}$$

for $n \ge 1$.

For *n* even, we have

$$\begin{split} N_{2n} &= N_{2n+1} \frac{(n+1)^{n+1} n^n}{(2n+1)^{2n+1}} 2^{2n+1} < N_{2n+1} \frac{2^{2n+1} (n+1)}{(2n+1)^{2n+1}} \left(\frac{2n+1}{2}\right)^{2n} = \\ &= N_{2n+1} \frac{2(n+1)}{2n+1} \le \frac{\sqrt{3}(b-a)}{4\sqrt{2n+1}} \cdot \frac{2(n+1)}{2n+1} = \frac{1}{2} \cdot \frac{\sqrt{3}(n+1)(a-b)}{(2n+1)\sqrt{2n+1}} < \frac{b-a}{2\sqrt{2n}} \end{split}$$

So generally

$$N_n \le \frac{b-a}{2\sqrt{n}}$$

The relation becomes

$$|f(x) - B_n(x; f)| < \frac{3}{2}\omega \left(\frac{b-a}{\sqrt{n}}\right)$$

If the function f is continuous $\omega\left(\frac{b-a}{\sqrt{n}}\right) \to 0$ for $n \to \infty$, Weierstrass theorem is demonstrated as well. Moreover, the best approximation of a continuous function is seen using n degree polynomials, that is μ_n , is at least of $\omega\left(\frac{b-a}{\sqrt{n}}\right)$ degree.

REFERENCES

- [1] T. Popoviciu, Sur l'aproximation des functions convexes d'ordre superieur, Mathematica (Cluj) 1935;
- [2] L. Lupaş, A. Lupaş, Polynomials of binomial type and approximation operators, Studia Universitatea Babeş-Bolyai Mathematica (1987)
- [3] D.D. Stancu, Approximation of functions by a new class of linear polynomial operators, Revista Roumanie Math Pures et Application (1968)