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Abstract: Linear quadratic Gaussian (LQG) optimization is often used in aviation and 

space applications. Over three dozens of examples for such applications from the COMPleib 
benchmark collection are used in this paper to investigate the performance of a new Newton-

type algorithm to solve LQG problems. The algorithm efficiency and its accuracy, measured 

in terms of normalized and relative residuals of computed solutions of algebraic Riccati 
equations (AREs), are analyzed. Various stabilizing initializations, including that provided by 

the state-of-the-art MATLAB solver, are considered. The numerical results strongly 

recommend this algorithm especially for improving approximate solutions computed using 
other approaches. 
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1. INTRODUCTION 

 

Algebraic Riccati equations (AREs) are cornerstones for control theory and its 

practical applications. Many control systems analysis and design procedures require 

their solution. AREs are the main topic of Linear Quadratic Gaussian (LQG) 

optimization, involved in optimal control and estimation problems. Such equations 

appear in various domains, including model reduction, optimal filtering, guidance, 

(robust) control, etc. Many applications are encountered in the aerospace domain. 

Actually, control theory recorded a strong development during and after the second 

World War, mainly to support such applications. 

In general, optimization needs powerful computational tools and simulation 

techniques. Of major importance for numerical calculations are reliability, efficiency, 

and accuracy of the results. This is due to several reasons, including the limited 

precision of the calculations, and the need for having the results as quickly as possible 

(especially, for real-time applications). Moreover, the hidden nature of the 

intermediate results, from which the returned solution is obtained, requires guarantees 

on their correctness. 

There are several formulas for AREs, depending on the system involved. Of 

interest in this paper is the continuous-time ARE (CARE) for standard systems, 

defined by 

  (1) 
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where  is the unknown matrix,  and  are ,  is ,  is , with , 

, and  symmetric matrices ( , , ),  positive-semidefinite 

( ),  positive definite ( ), hence  nonsingular. The matrices  and  are 

the state and input (control) matrices of the dynamic system d /d , 

, while  and  are the state and input weighting matrices of the 

performance index, which should be minimized along the system trajectories. With 

suitable assumptions, such as, the pair ( , ) is stabilizable, and ( , ) detectable, 

where  is a maximal rank factor of , i.e.,  and rank( )  rank( ), then 

(1) has a unique positive-semidefinite stabilizing solution, , and the 

optimal control trajectory is given by the state feedback law  

[1]. This law ensures the stability of controlled system. Specifically, the “closed-loop” 

system matrix,  defined by  is stable, that is, all its eigenvalues have 

negative real parts. Defining , then  is the controller optimal 

gain matrix. By a suitable selection of the weighting matrices  and , the closed-

loop dynamics can be modified to satisfy certain performance criteria, including fast 

transient response, trajectory following, disturbance rejection, etc.  

Dual to the control problem is the estimation problem, which aims to find proper 

values of some parameters, or of the state of a dynamic system, using observers or 

filters, like Kalman filter. Many theoretical results have been extended to more 

general classes of systems, including periodic systems, nonlinear systems, discrete-

event systems, etc.  

The solutions of a CARE are the matrices  for which . When  

is not a solution of (1), then  differs from the zero matrix;  is called the 

residual of (1) in . The Frobenius norm of , , is a measure of the error 

in  with respect to the solution . 

The literature regarding theory and numerical solution of AREs and their practical 

applications is vast. Several monographs, e.g., [1-5], address various theoretical and 

practical issues. There are many techniques and algorithms to compute the optimal 

solution  (see, e.g., [4,5]). Both direct or iterative algorithms have been proposed. 

The first class contains the (generalized) Schur techniques, e.g., [6-8]. The second 

class has several categories, including matrix sign function techniques, e.g., [9,10], 

Newton techniques [6,11], doubling algorithms [12,13], or recursive algorithms [14]. 

Often used is the direct procedure which computes a basis  of the stable invariant 

subspace of a Hamiltonian  matrix  built using , , , and . If  is ill-

conditioned with respect to inversion, then the obtained matrix  and, therefore, the 

computed solution , will be inaccurate. Therefore, in such a case, it is preferable to 

use an extended matrix pencil of order  instead of , and compute the 

associated stable right deflating subspace. This procedure, using either the matrix , 

or the extended matrix pencil, is implemented in the state-of-the-art MATLAB 

function care. This matrix pencil can be rewritten as a structured, skew-

Hamiltonian/Hamiltonian (sHH) pencil [15], and the optimal problem can be solved 

by structure-exploiting algorithms [16]. Software implementations for sHH pencils 

have also been included in the Subroutine Library for Control Theory (SLICOT) [17] 

(www.slicot.org). Applications in optimal and robust control have been described, 

e.g., in [18,19]. 

Newton’s method for solving AREs has been considered by many authors, for 

instance, [3-6]. But matrix sign function method for AREs [9,10] is actually a 

specialization of Newton’s method for computing the square root of the identity 

matrix of order .  
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Newton’s method is best used for iterative improvement of a solution, or as a 

defect correction method [20], delivering the maximal possible accuracy when 

starting from a good approximate solution. Moreover, it may be preferred in 

implementing certain fault-tolerant systems, which require controller updating [21]. 

 

2. MODIFIED NEWTON ALGORITHM 

 

The algorithmic variants considered in the sequel for CAREs are extensions of 

Newton’s method, which employ a line search procedure attempting to reduce the 

residual along the Newton direction. The conceptual algorithm can be stated as 

follows [22]: 

Algorithm NCARE: Modified Newton method for CARE 

Input: The coefficient matrices , , , , and an initial stabilizing matrix 

. 

Output: The approximate solution  of CARE (1). 

FOR , DO 

1. Compute . If (non)convergence is detected, return  and/or a 

warning or an error value. 

2. Compute  and , where . 

3. Solve in  the Lyapunov equation . 

4. Find a step size  which minimizes  with respect to . 

5. Update . 

END 

 

Standard Newton algorithm is obtained by taking  in Step 4 at each 

iteration. When the initial matrix  is far from a Riccati equation solution, Newton’s 

method with line search often outperforms the standard Newton’s method. 

With usual assumptions (e.g., stabilizability of the system pair ( , ), and 

existence and uniqueness of the stabilizing solution ), if  is stabilizing, then the 

iterates of the Algorithm NCARE with  have the following properties [22]: 

(a) All matrices  are stabilizing. 

(b) . 

(c) . 

(d) There is a constant  such that , . 

Note that the global quadratic convergence at item (d) does not hold for , 

involving the iterates  and . The line search variant does not ensure the monotony 

of the sequence { } in terms of definiteness, as in (b), but the convergence of the 

residual sequence to the zero matrix. The other properties hold; in addition, 

. 

More general algorithms for generalized or discrete-time systems, possibly 

including a state and input cross weighting matrix, are dealt with, e.g., in [22,23], and 

are implemented in a new Newton-type solver. 

The basic stopping criterion for the iterative process of the Newton solver is 

expressed in terms of a normalized residual, 

max( , ), and a tolerance τ. If , the iterative 

process is successfully terminated. If , a default tolerance is used, defined in 

terms of the Frobenius norms of the given matrices, and relative machine precision, 

.  
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For systems with very large norms of the matrices , , and/or , and a small norm of 

the solution , the stopping criterion involving  might not be satisfied in a 

reasonable number of iterations (or never, due to accumulated rounding errors), while 

an acceptable approximate solution might be much earlier available. Therefore, the 

MATLAB-style relative residual, ), which is the ratio of  and the sum 

of Frobenius norms of the matrix terms of (1), is also tested at iterations , 

, and it might produce the termination of the iterative process, instead of 

the criterion based on the normalized residual . The relative residual is not tested at 

each iteration in order to reduce the computation costs, and to increase the chances of 

termination via the normalized residual test. 

Often, but mainly in the first iterations, the computed optimal steps  are too 

small, and the residual decreases too slowly. This is called stagnation, and remedies 

are used to escape stagnation. Specifically,  is set to 1 when stagnation, or other 

criteria of slow convergence, are detected. This is equivalent with a restart of the 

standard Newton algorithm, which is theoretically guaranteed to converge from any 

stabilizing initialization. On the other hand, after such a reset, the residual norm might 

increase, sometimes significantly, but fewer unit steps are generally needed than for a 

stagnating line search procedure. Anyhow, the residual increase is smaller than what 

might appear in the beginning of the iterative process if only standard steps would be 

used. Consequently, this strategy is very attractive. 

Other line search strategies, including combined or hybrid strategies have also 

been investigated. Specifically, in the combined strategy, line search is employed in 

the beginning of the iterative process, but the algorithm switches to the standard 

method when the normalized residual is smaller than a specified (or default) tolerance. 

In the hybrid strategy, both standard Newton step and the step corresponding to the 

line search procedure are computed, and the step which gives the smallest residual is 

selected at each iteration. 

 

3. NUMERICAL RESULTS 

 

This section presents some results of a performance investigation of the new 

Newton solver, developed by the author. The numerical results have been obtained on 

an Intel Core i7-3820QM portable computer at 2.7 GHz, with 16 GB RAM, with the 

relative machine precision , using Windows 7 Professional 

(Service Pack 1) operating system (64 bit), Intel Visual Fortran Composer XE 2015 

and MATLAB 8.6.0.267246 (R2015b). A MATLAB executable MEX-function has 

been built using MATLAB-provided optimized LAPACK [24] and BLAS 

subroutines. 

The results reported here have been obtained for linear systems modelling 

aerospace applications from the COMPleib collection [25], which contains 124 

standard continuous-time models. Specifically, the examples tried are listed below, 

where the notation n = [a..b] means that n has a minimum value a and a maximum 

value b, and p is the number of system outputs: 

  ircraft models        AC18), with  [4..55],  [1..4],  [2..4]; 

 Helicopter models (HE1     HE7), with  [4..20],  [2..4],  [1..6]; 

 Jet engine models (JE1     JE3), with  [21..30],  3,  [3..6]; 

 Academic models (NN5, NN15, NN16), with  [3..8],  [1..4],  

[2..4]; 

 Flexible satellite model (FS), with 5,  1,  3; 



SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE – AFASES2018 
 

289 

 Space structure models (DLR1     DLR3), with  [10..40], ; 

 International Space Station component (ISS1, ISS2), with 270,  

3; 

 Reduced order models (ROC2, ROC5), with  [7..10],  [2..3],  

[3..5]. 

A brief description is given below. More details are given in [25] and the 

references therein.  AC1 and AC2 model the linearized vertical-plane dynamics of an 

aircraft. AC3 models an L-1011 aircraft in cruise flight conditions, while AC4 

describes an autopilot control problem for an air-to-air missile. AC5 describes the 

motion of a Boeing B-747 aircraft flying at 20000 ft with a speed of Mach 0.8. AC6 is 

an L-1011 aircraft model; AC7 and AC8 model the motion of a transport aircraft at 

35000 ft, with Mach 0.57 and with the center of gravity at the most aft location, and at 

the aft location, respectively. AC9 is a variation of AC8 with an additional state and 

four inputs instead of one. AC10 is an aeroelastic model of high order describing a 

modified Boeing B-767 airplane at flutter condition. AC11 is a linearized model of an 

CVC-type aircraft. AC12     AC14 define the linearized equations of motion for the 

longitudinal dynamics of an ASTOVL (Advanced Short Take-Off and Vertical 

Landing) aircraft, with increasing orders. AC15 and AC16 model a supersonic 

transport aircraft flying at Mach 2.7. AC17 is a model of the lateral axis dynamic of a 

L-1011 aircraft, and AC18 is a reduced order model of AC10.  

HE1 describes the longitudinal motion of a VTOL helicopter at flying speed of 

135 knots, while HE2 models the longitudinal-vertical motion of an AH-64 helicopter 

at 130 knots. HE3 represents the linearized dynamics of a Bell 201A-1 helicopter, and 

HE4    HE7 are variations of a model for a twin-engine, multi-purpose military 

helicopter.  

JE1 represents a J-100 jet engine, and JE2 and JE3 are variations of a model for a 

Rolls-Royce 2-spool reheated turbofan for a military aircraft. 

NN5 is a model of a Saturn V booster, while NN15 is a space backpack model, 

and NN16 describes a large space structure. 

FS presents the dynamics of a flexible satellite, deduced from a second order 

model (with damping and stiffness matrices). DLR1   DLR3 are variations of a model 

describing the active vibration damping of large flexible space structures. ISS1 and 

ISS2 are models of a component of the International Space Station. 

Finally, ROC2 models the same aircraft as AC7, but for an altitude of 25500 ft at 

Mach 0.87, and ROC5 describes a free gyro-stabilized mirror system used to stabilize 

the sensors mounted on vehicles subjected to vibrations, like aircrafts and helicopters. 

The algebraic Riccati equations have been solved for all these 39 examples, using 

weighting matrices set to identity, , . The purpose of our study was not 

to find suitable weighting matrices for solving specific optimal control problems, but 

to investigate the performance of the new solver. 

In one set of tests, Newton solver was initialized by the solution computed by the 

state-of-the-art MATLAB function care. The tolerance  has been set either to the 

default value, or to . With the default value, Newton solver needed just one 

iteration to achieve the required accuracy for all examples, except ROC5 (numbered 

39), for which it returned before finishing the first iteration, because was 

already below the tolerance value. With tolerance , Newton solver needed 0 

iterations for ROC5, 2 iterations for AC18, HE2     HE5, and DLR1, 3 iterations for 

NN5, 4 iterations for AC1 and AC2, and still 1 iteration for the remaining 29 

examples. 
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Figure 1 displays the normalized residuals of CARE solutions for the mentioned 

39 examples from the COMPleib collection, computed using MATLAB function care 

and standard Newton solver, with care initialization and either default tolerance, in 

part (a), or tolerance , in part (b). Slightly more accurate results than in part (a) are 

obtained in part (b) for examples mentioned above, numbered 1, 2, 18, 20:23, 29, and 

33, which needed more than one iteration. For all examples, but the last one (ROC5, 

numbered 39), Newton solver was more accurate than care, and it improved the 

normalized residuals sometimes with several orders of magnitude. (Note that the 

ordinate axes are in a logarithmic scale.)  

In the same way as in Fig. 1, Fig. 2 plots the MATLAB-style relative residuals. 

Using a tolerance set to , slightly more accurate results are obtained for the same 

examples as above. It is worth mentioning that Newton solver obtained relative 

residuals close to the limiting accuracy  of the computer, or even smaller than , 

while care sometimes returned much larger residuals. Moreover, the variation of these 

values is in a much larger interval for care than for Newton solver, which shows a 

more uniform behavior. For most examples, this improvement is obtained in just one 

Newton iteration. 

Similarly, Fig. 3 shows the corresponding elapsed CPU times for the two solvers. 

Part (a) of Fig. 3 compares care and standard Newton solver, while part (b) also 

includes modified Newton solver; moreover, balancing the matrices  was either 

used or not before solving Lyapunov equations for both variants. (Balancing may 

reduce the 1-norm of a matrix and improve accuracy of the computed results.) 

Clearly, balancing, but especially line search (LS), increases somewhat the computing 

time. Since the normalized and relative residuals for all these four options were the 

same with care initialization, it is recommended to use standard Newton variant 

(STD) in such a case. Since very few iterations are most often needed, the CPU time 

for Newton solver is a small fraction of that for care.  

 

  
(a) (b) 

FIG. 1. Normalized residuals for 39 COMPleib examples using MATLAB function care and standard 

Newton solver with: (a) default tolerance; (b) tolerance;slightly more accurate results than in part (a) 

are obtained in part (b) for examples numbered 1, 2, 18, 20:23, 29, and 33 
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(a) (b) 

FIG. 2. Relative, care-style residuals for 39 COMPleib examples using MATLAB function care 

and standard Newton solver with: (a) default tolerance; (b) tolerance; slightly more accurate results 

than in part (a) are obtained in part (b) for examples numbered 1, 2, 18, 20:23, 29, and 33  

 

 

  
(a) (b) 

FIG. 3. Elapsed CPU times for solving 39 COMPleib examples using MATLAB function care and 

Newton solver with default tolerance;  (a) CPU times for care and standard Newton solver; (b) CPU 
times for care and Newton solver with various options: line search (LS); LS with balancing (LS bal); 

standard (STD); STD with balancing (STD bal); option STD is usually the fastest 

 

  
(a) (b) 

FIG. 4. (a) Ratios of the elapsed CPU times for MATLAB function care and standard Newton 

solver with default tolerance; (b) improvement of care-style residuals obtained by standard Newton 

solver against care solver; the height of the i-th bar indicates the number of examples for which the 

improvement was between i-1 and i orders of magnitude 
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Part (a) of Fig. 4 plots the ratios of the elapsed CPU time needed by MATLAB 

function care and standard Newton solver. The bar graph from part (b) shows the 

improvement obtained using standard Newton solver, default tolerance and care 

initialization. Specifically, the height of the i-th vertical bar indicates the number of 

examples for which the improvement was between i−  and i orders of magnitude, in 

comparison to care. The number of examples in the five bins are 4, 21, 6, 5, and 3, 

corresponding to improvements till one order of magnitude for four examples, 

between one and two orders of magnitude for 21 examples, and so on, and finally 

between four and five orders of magnitude for 3 examples. 

In another set of tests,  was set to a zero matrix, if  was found to be stable; 

otherwise, an initialization of Newton solver with a matrix computed using the 

stabilization algorithm in [11] was tried, and when this algorithm failed to deliver a 

stabilizing  matrix, the solution provided by care was used. There are 12 stable 

examples (AC3, AC6, AC15        ,    ,    ,   R    DLR3, ISS1, and ISS2), but 

the other 27 examples are unstable. For 11 examples and default tolerance, one or 

another variant of Newton's method obtained larger normalized and care-style 

residuals than MATLAB function care. These examples are    ,    ,            , 

  R      DLR3, ISS1, ISS2, and ROC5, and eight of them are stable. But either 

standard Newton variant (for AC3, AC6, and JE1), or Newton variant with line search 

(for other examples, but ROC5), was more accurate by one or more orders of 

magnitude.  

Figure 5 (a) plots the MATLAB-style relative residuals for care and standard 

Newton solver with tolerance set to . Figure 5 (b) shows the elapsed CPU times for 

care and both standard and modified Newton solver with tolerance , with or 

without balancing. Standard and modified Newton solvers are more accurate for all 

examples, but they can be more time consuming than care for some examples, which 

require more iterations with  set to 0, or to the matrix computed by the algorithm in 

[11]. This happened for examples HE6, HE7, JE1     JE3, DLR3, ISS1, and ISS2. 

 

  
(a) (b) 

 
FIG. 5. Relative residuals and elapsed CPU times for solving 39 COMPleib examples using 

MATLAB function care and Newton solver with tolerance  and various initializations (either 0, or 
provided by the algorithm in [11], or by care);  (a) relative residuals for care and standard Newton 

solver; (b) CPU times for care and Newton solver with various options: line search (LS); LS with 

balancing (LS bal); standard (STD); STD with balancing (STD bal); for few examples, care is the 

fastest solver 
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The maximum number of iterations was 29 for JE2 and JE3 with line search 

variant and for ROC5 with standard variant. Specifically, for ROC5, with unit step 

sizes, the solver generated an iterate X1 with a residual of Frobenius norm larger than 

 and needed 26 iterations to reduce it to a value less than 1, and finally to about 

 (with a corresponding normalized residual of order ). On the other hand, 

line search variant started with a step size of order  and returned after five 

iterations with a step size very close to 1, and a residual value of order  (with a 

corresponding normalized residual of order ). This shows the potential of line 

search to speed up the convergence rate. A similar behavior was encountered for 

several other examples. 

The mean number of iterations was almost 11 for the line search variant and 14 for 

the standard one. The mean values of the normalized residuals were about 

 for the line search variant,  for the standard variant and  

 for care.  xamples     ,    , NN , and R   , for line search, and 

   ,    ,   R    DLR3, ISS1, and ISS2, for standard variant, contributed 

significantly to the increase of these means.  

The mean CPU time for the line search variant was comparable to (but slightly 

larger than) that for care, while for the standard variant, it was about 152% larger. 

Balancing option somewhat reduced the differences, and line search with balancing 

was slightly faster than care.  

      

CONCLUSIONS 

 

Basic facts and improved procedures and algorithms for solving continuous-time 

algebraic Riccati equations using standard or modified Newton’s method, with several 

line search strategies, have been presented. Numerical results obtained on a 

comprehensive set of examples from the COMPleib collection have been summarized 

and they illustrate the performance and capabilities of this new solver. The possibility 

to offer, in few iterations, a reduction by one or more orders of magnitude of the 

normalized and MATLAB-style residuals of the solutions computed by MATLAB 

function care, makes the Newton solver an attractive support tool for solving CAREs.  
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