
SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE – AFASES2018

285

ACCURATE LINEAR QUADRATIC OPTIMIZATION IN

AVIATION AND SPACE APPLICATIONS

Vasile SIMA

National Institute for Research & Development in Informatics

Bucharest, Romania (vsima@ici.ro)

DOI: 10.19062/2247-3173.2018.20.37

Abstract: Linear quadratic Gaussian (LQG) optimization is often used in aviation and

space applications. Over three dozens of examples for such applications from the COMPleib
benchmark collection are used in this paper to investigate the performance of a new Newton-

type algorithm to solve LQG problems. The algorithm efficiency and its accuracy, measured

in terms of normalized and relative residuals of computed solutions of algebraic Riccati
equations (AREs), are analyzed. Various stabilizing initializations, including that provided by

the state-of-the-art MATLAB solver, are considered. The numerical results strongly

recommend this algorithm especially for improving approximate solutions computed using
other approaches.

Keywords: algebraic Riccati equations, linear quadratic optimization, numerical

algorithms, optimal control

1. INTRODUCTION

Algebraic Riccati equations (AREs) are cornerstones for control theory and its

practical applications. Many control systems analysis and design procedures require

their solution. AREs are the main topic of Linear Quadratic Gaussian (LQG)

optimization, involved in optimal control and estimation problems. Such equations

appear in various domains, including model reduction, optimal filtering, guidance,

(robust) control, etc. Many applications are encountered in the aerospace domain.

Actually, control theory recorded a strong development during and after the second

World War, mainly to support such applications.

In general, optimization needs powerful computational tools and simulation

techniques. Of major importance for numerical calculations are reliability, efficiency,

and accuracy of the results. This is due to several reasons, including the limited

precision of the calculations, and the need for having the results as quickly as possible

(especially, for real-time applications). Moreover, the hidden nature of the

intermediate results, from which the returned solution is obtained, requires guarantees

on their correctness.

There are several formulas for AREs, depending on the system involved. Of

interest in this paper is the continuous-time ARE (CARE) for standard systems,

defined by

 (1)

mailto:vsima@ici.ro

 Accurate Linear Quadratic Optimization in Aviation and Space Applications

286

where is the unknown matrix, and are , is , is , with ,

, and symmetric matrices (, ,), positive-semidefinite

(), positive definite (), hence nonsingular. The matrices and are

the state and input (control) matrices of the dynamic system d /d ,

, while and are the state and input weighting matrices of the

performance index, which should be minimized along the system trajectories. With

suitable assumptions, such as, the pair (,) is stabilizable, and (,) detectable,

where is a maximal rank factor of , i.e., and rank() rank(), then

(1) has a unique positive-semidefinite stabilizing solution, , and the

optimal control trajectory is given by the state feedback law

[1]. This law ensures the stability of controlled system. Specifically, the “closed-loop”

system matrix, defined by is stable, that is, all its eigenvalues have

negative real parts. Defining , then is the controller optimal

gain matrix. By a suitable selection of the weighting matrices and , the closed-

loop dynamics can be modified to satisfy certain performance criteria, including fast

transient response, trajectory following, disturbance rejection, etc.

Dual to the control problem is the estimation problem, which aims to find proper

values of some parameters, or of the state of a dynamic system, using observers or

filters, like Kalman filter. Many theoretical results have been extended to more

general classes of systems, including periodic systems, nonlinear systems, discrete-

event systems, etc.

The solutions of a CARE are the matrices for which . When

is not a solution of (1), then differs from the zero matrix; is called the

residual of (1) in . The Frobenius norm of , , is a measure of the error

in with respect to the solution .

The literature regarding theory and numerical solution of AREs and their practical

applications is vast. Several monographs, e.g., [1-5], address various theoretical and

practical issues. There are many techniques and algorithms to compute the optimal

solution (see, e.g., [4,5]). Both direct or iterative algorithms have been proposed.

The first class contains the (generalized) Schur techniques, e.g., [6-8]. The second

class has several categories, including matrix sign function techniques, e.g., [9,10],

Newton techniques [6,11], doubling algorithms [12,13], or recursive algorithms [14].

Often used is the direct procedure which computes a basis of the stable invariant

subspace of a Hamiltonian matrix built using , , , and . If is ill-

conditioned with respect to inversion, then the obtained matrix and, therefore, the

computed solution , will be inaccurate. Therefore, in such a case, it is preferable to

use an extended matrix pencil of order instead of , and compute the

associated stable right deflating subspace. This procedure, using either the matrix ,

or the extended matrix pencil, is implemented in the state-of-the-art MATLAB

function care. This matrix pencil can be rewritten as a structured, skew-

Hamiltonian/Hamiltonian (sHH) pencil [15], and the optimal problem can be solved

by structure-exploiting algorithms [16]. Software implementations for sHH pencils

have also been included in the Subroutine Library for Control Theory (SLICOT) [17]

(www.slicot.org). Applications in optimal and robust control have been described,

e.g., in [18,19].

Newton’s method for solving AREs has been considered by many authors, for

instance, [3-6]. But matrix sign function method for AREs [9,10] is actually a

specialization of Newton’s method for computing the square root of the identity

matrix of order .

SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE – AFASES2018

287

Newton’s method is best used for iterative improvement of a solution, or as a

defect correction method [20], delivering the maximal possible accuracy when

starting from a good approximate solution. Moreover, it may be preferred in

implementing certain fault-tolerant systems, which require controller updating [21].

2. MODIFIED NEWTON ALGORITHM

The algorithmic variants considered in the sequel for CAREs are extensions of

Newton’s method, which employ a line search procedure attempting to reduce the

residual along the Newton direction. The conceptual algorithm can be stated as

follows [22]:

Algorithm NCARE: Modified Newton method for CARE

Input: The coefficient matrices , , , , and an initial stabilizing matrix

.

Output: The approximate solution of CARE (1).

FOR , DO

1. Compute . If (non)convergence is detected, return and/or a

warning or an error value.

2. Compute and , where .

3. Solve in the Lyapunov equation .

4. Find a step size which minimizes with respect to .

5. Update .

END

Standard Newton algorithm is obtained by taking in Step 4 at each

iteration. When the initial matrix is far from a Riccati equation solution, Newton’s

method with line search often outperforms the standard Newton’s method.

With usual assumptions (e.g., stabilizability of the system pair (,), and

existence and uniqueness of the stabilizing solution), if is stabilizing, then the

iterates of the Algorithm NCARE with have the following properties [22]:

(a) All matrices are stabilizing.

(b) .

(c) .

(d) There is a constant such that , .

Note that the global quadratic convergence at item (d) does not hold for ,

involving the iterates and . The line search variant does not ensure the monotony

of the sequence { } in terms of definiteness, as in (b), but the convergence of the

residual sequence to the zero matrix. The other properties hold; in addition,

.

More general algorithms for generalized or discrete-time systems, possibly

including a state and input cross weighting matrix, are dealt with, e.g., in [22,23], and

are implemented in a new Newton-type solver.

The basic stopping criterion for the iterative process of the Newton solver is

expressed in terms of a normalized residual,

max(,), and a tolerance τ. If , the iterative

process is successfully terminated. If , a default tolerance is used, defined in

terms of the Frobenius norms of the given matrices, and relative machine precision,

.

 Accurate Linear Quadratic Optimization in Aviation and Space Applications

288

For systems with very large norms of the matrices , , and/or , and a small norm of

the solution , the stopping criterion involving might not be satisfied in a

reasonable number of iterations (or never, due to accumulated rounding errors), while

an acceptable approximate solution might be much earlier available. Therefore, the

MATLAB-style relative residual,), which is the ratio of and the sum

of Frobenius norms of the matrix terms of (1), is also tested at iterations ,

, and it might produce the termination of the iterative process, instead of

the criterion based on the normalized residual . The relative residual is not tested at

each iteration in order to reduce the computation costs, and to increase the chances of

termination via the normalized residual test.

Often, but mainly in the first iterations, the computed optimal steps are too

small, and the residual decreases too slowly. This is called stagnation, and remedies

are used to escape stagnation. Specifically, is set to 1 when stagnation, or other

criteria of slow convergence, are detected. This is equivalent with a restart of the

standard Newton algorithm, which is theoretically guaranteed to converge from any

stabilizing initialization. On the other hand, after such a reset, the residual norm might

increase, sometimes significantly, but fewer unit steps are generally needed than for a

stagnating line search procedure. Anyhow, the residual increase is smaller than what

might appear in the beginning of the iterative process if only standard steps would be

used. Consequently, this strategy is very attractive.

Other line search strategies, including combined or hybrid strategies have also

been investigated. Specifically, in the combined strategy, line search is employed in

the beginning of the iterative process, but the algorithm switches to the standard

method when the normalized residual is smaller than a specified (or default) tolerance.

In the hybrid strategy, both standard Newton step and the step corresponding to the

line search procedure are computed, and the step which gives the smallest residual is

selected at each iteration.

3. NUMERICAL RESULTS

This section presents some results of a performance investigation of the new

Newton solver, developed by the author. The numerical results have been obtained on

an Intel Core i7-3820QM portable computer at 2.7 GHz, with 16 GB RAM, with the

relative machine precision , using Windows 7 Professional

(Service Pack 1) operating system (64 bit), Intel Visual Fortran Composer XE 2015

and MATLAB 8.6.0.267246 (R2015b). A MATLAB executable MEX-function has

been built using MATLAB-provided optimized LAPACK [24] and BLAS

subroutines.

The results reported here have been obtained for linear systems modelling

aerospace applications from the COMPleib collection [25], which contains 124

standard continuous-time models. Specifically, the examples tried are listed below,

where the notation n = [a..b] means that n has a minimum value a and a maximum

value b, and p is the number of system outputs:

 ircraft models AC18), with [4..55], [1..4], [2..4];

 Helicopter models (HE1 HE7), with [4..20], [2..4], [1..6];

 Jet engine models (JE1 JE3), with [21..30], 3, [3..6];

 Academic models (NN5, NN15, NN16), with [3..8], [1..4],

[2..4];

 Flexible satellite model (FS), with 5, 1, 3;

SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE – AFASES2018

289

 Space structure models (DLR1 DLR3), with [10..40], ;

 International Space Station component (ISS1, ISS2), with 270,

3;

 Reduced order models (ROC2, ROC5), with [7..10], [2..3],

[3..5].

A brief description is given below. More details are given in [25] and the

references therein. AC1 and AC2 model the linearized vertical-plane dynamics of an

aircraft. AC3 models an L-1011 aircraft in cruise flight conditions, while AC4

describes an autopilot control problem for an air-to-air missile. AC5 describes the

motion of a Boeing B-747 aircraft flying at 20000 ft with a speed of Mach 0.8. AC6 is

an L-1011 aircraft model; AC7 and AC8 model the motion of a transport aircraft at

35000 ft, with Mach 0.57 and with the center of gravity at the most aft location, and at

the aft location, respectively. AC9 is a variation of AC8 with an additional state and

four inputs instead of one. AC10 is an aeroelastic model of high order describing a

modified Boeing B-767 airplane at flutter condition. AC11 is a linearized model of an

CVC-type aircraft. AC12 AC14 define the linearized equations of motion for the

longitudinal dynamics of an ASTOVL (Advanced Short Take-Off and Vertical

Landing) aircraft, with increasing orders. AC15 and AC16 model a supersonic

transport aircraft flying at Mach 2.7. AC17 is a model of the lateral axis dynamic of a

L-1011 aircraft, and AC18 is a reduced order model of AC10.

HE1 describes the longitudinal motion of a VTOL helicopter at flying speed of

135 knots, while HE2 models the longitudinal-vertical motion of an AH-64 helicopter

at 130 knots. HE3 represents the linearized dynamics of a Bell 201A-1 helicopter, and

HE4 HE7 are variations of a model for a twin-engine, multi-purpose military

helicopter.

JE1 represents a J-100 jet engine, and JE2 and JE3 are variations of a model for a

Rolls-Royce 2-spool reheated turbofan for a military aircraft.

NN5 is a model of a Saturn V booster, while NN15 is a space backpack model,

and NN16 describes a large space structure.

FS presents the dynamics of a flexible satellite, deduced from a second order

model (with damping and stiffness matrices). DLR1 DLR3 are variations of a model

describing the active vibration damping of large flexible space structures. ISS1 and

ISS2 are models of a component of the International Space Station.

Finally, ROC2 models the same aircraft as AC7, but for an altitude of 25500 ft at

Mach 0.87, and ROC5 describes a free gyro-stabilized mirror system used to stabilize

the sensors mounted on vehicles subjected to vibrations, like aircrafts and helicopters.

The algebraic Riccati equations have been solved for all these 39 examples, using

weighting matrices set to identity, , . The purpose of our study was not

to find suitable weighting matrices for solving specific optimal control problems, but

to investigate the performance of the new solver.

In one set of tests, Newton solver was initialized by the solution computed by the

state-of-the-art MATLAB function care. The tolerance has been set either to the

default value, or to . With the default value, Newton solver needed just one

iteration to achieve the required accuracy for all examples, except ROC5 (numbered

39), for which it returned before finishing the first iteration, because was

already below the tolerance value. With tolerance , Newton solver needed 0

iterations for ROC5, 2 iterations for AC18, HE2 HE5, and DLR1, 3 iterations for

NN5, 4 iterations for AC1 and AC2, and still 1 iteration for the remaining 29

examples.

 Accurate Linear Quadratic Optimization in Aviation and Space Applications

290

Figure 1 displays the normalized residuals of CARE solutions for the mentioned

39 examples from the COMPleib collection, computed using MATLAB function care

and standard Newton solver, with care initialization and either default tolerance, in

part (a), or tolerance , in part (b). Slightly more accurate results than in part (a) are

obtained in part (b) for examples mentioned above, numbered 1, 2, 18, 20:23, 29, and

33, which needed more than one iteration. For all examples, but the last one (ROC5,

numbered 39), Newton solver was more accurate than care, and it improved the

normalized residuals sometimes with several orders of magnitude. (Note that the

ordinate axes are in a logarithmic scale.)

In the same way as in Fig. 1, Fig. 2 plots the MATLAB-style relative residuals.

Using a tolerance set to , slightly more accurate results are obtained for the same

examples as above. It is worth mentioning that Newton solver obtained relative

residuals close to the limiting accuracy of the computer, or even smaller than ,

while care sometimes returned much larger residuals. Moreover, the variation of these

values is in a much larger interval for care than for Newton solver, which shows a

more uniform behavior. For most examples, this improvement is obtained in just one

Newton iteration.

Similarly, Fig. 3 shows the corresponding elapsed CPU times for the two solvers.

Part (a) of Fig. 3 compares care and standard Newton solver, while part (b) also

includes modified Newton solver; moreover, balancing the matrices was either

used or not before solving Lyapunov equations for both variants. (Balancing may

reduce the 1-norm of a matrix and improve accuracy of the computed results.)

Clearly, balancing, but especially line search (LS), increases somewhat the computing

time. Since the normalized and relative residuals for all these four options were the

same with care initialization, it is recommended to use standard Newton variant

(STD) in such a case. Since very few iterations are most often needed, the CPU time

for Newton solver is a small fraction of that for care.

(a) (b)

FIG. 1. Normalized residuals for 39 COMPleib examples using MATLAB function care and standard

Newton solver with: (a) default tolerance; (b) tolerance;slightly more accurate results than in part (a)

are obtained in part (b) for examples numbered 1, 2, 18, 20:23, 29, and 33

SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE – AFASES2018

291

(a) (b)

FIG. 2. Relative, care-style residuals for 39 COMPleib examples using MATLAB function care

and standard Newton solver with: (a) default tolerance; (b) tolerance; slightly more accurate results

than in part (a) are obtained in part (b) for examples numbered 1, 2, 18, 20:23, 29, and 33

(a) (b)

FIG. 3. Elapsed CPU times for solving 39 COMPleib examples using MATLAB function care and

Newton solver with default tolerance; (a) CPU times for care and standard Newton solver; (b) CPU
times for care and Newton solver with various options: line search (LS); LS with balancing (LS bal);

standard (STD); STD with balancing (STD bal); option STD is usually the fastest

(a) (b)

FIG. 4. (a) Ratios of the elapsed CPU times for MATLAB function care and standard Newton

solver with default tolerance; (b) improvement of care-style residuals obtained by standard Newton

solver against care solver; the height of the i-th bar indicates the number of examples for which the

improvement was between i-1 and i orders of magnitude

 Accurate Linear Quadratic Optimization in Aviation and Space Applications

292

Part (a) of Fig. 4 plots the ratios of the elapsed CPU time needed by MATLAB

function care and standard Newton solver. The bar graph from part (b) shows the

improvement obtained using standard Newton solver, default tolerance and care

initialization. Specifically, the height of the i-th vertical bar indicates the number of

examples for which the improvement was between i− and i orders of magnitude, in

comparison to care. The number of examples in the five bins are 4, 21, 6, 5, and 3,

corresponding to improvements till one order of magnitude for four examples,

between one and two orders of magnitude for 21 examples, and so on, and finally

between four and five orders of magnitude for 3 examples.

In another set of tests, was set to a zero matrix, if was found to be stable;

otherwise, an initialization of Newton solver with a matrix computed using the

stabilization algorithm in [11] was tried, and when this algorithm failed to deliver a

stabilizing matrix, the solution provided by care was used. There are 12 stable

examples (AC3, AC6, AC15 , , , R DLR3, ISS1, and ISS2), but

the other 27 examples are unstable. For 11 examples and default tolerance, one or

another variant of Newton's method obtained larger normalized and care-style

residuals than MATLAB function care. These examples are , , ,

 R DLR3, ISS1, ISS2, and ROC5, and eight of them are stable. But either

standard Newton variant (for AC3, AC6, and JE1), or Newton variant with line search

(for other examples, but ROC5), was more accurate by one or more orders of

magnitude.

Figure 5 (a) plots the MATLAB-style relative residuals for care and standard

Newton solver with tolerance set to . Figure 5 (b) shows the elapsed CPU times for

care and both standard and modified Newton solver with tolerance , with or

without balancing. Standard and modified Newton solvers are more accurate for all

examples, but they can be more time consuming than care for some examples, which

require more iterations with set to 0, or to the matrix computed by the algorithm in

[11]. This happened for examples HE6, HE7, JE1 JE3, DLR3, ISS1, and ISS2.

(a) (b)

FIG. 5. Relative residuals and elapsed CPU times for solving 39 COMPleib examples using

MATLAB function care and Newton solver with tolerance and various initializations (either 0, or
provided by the algorithm in [11], or by care); (a) relative residuals for care and standard Newton

solver; (b) CPU times for care and Newton solver with various options: line search (LS); LS with

balancing (LS bal); standard (STD); STD with balancing (STD bal); for few examples, care is the

fastest solver

SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE – AFASES2018

293

The maximum number of iterations was 29 for JE2 and JE3 with line search

variant and for ROC5 with standard variant. Specifically, for ROC5, with unit step

sizes, the solver generated an iterate X1 with a residual of Frobenius norm larger than

 and needed 26 iterations to reduce it to a value less than 1, and finally to about

 (with a corresponding normalized residual of order). On the other hand,

line search variant started with a step size of order and returned after five

iterations with a step size very close to 1, and a residual value of order (with a

corresponding normalized residual of order). This shows the potential of line

search to speed up the convergence rate. A similar behavior was encountered for

several other examples.

The mean number of iterations was almost 11 for the line search variant and 14 for

the standard one. The mean values of the normalized residuals were about

 for the line search variant, for the standard variant and

 for care. xamples , , NN , and R , for line search, and

 , , R DLR3, ISS1, and ISS2, for standard variant, contributed

significantly to the increase of these means.

The mean CPU time for the line search variant was comparable to (but slightly

larger than) that for care, while for the standard variant, it was about 152% larger.

Balancing option somewhat reduced the differences, and line search with balancing

was slightly faster than care.

CONCLUSIONS

Basic facts and improved procedures and algorithms for solving continuous-time

algebraic Riccati equations using standard or modified Newton’s method, with several

line search strategies, have been presented. Numerical results obtained on a

comprehensive set of examples from the COMPleib collection have been summarized

and they illustrate the performance and capabilities of this new solver. The possibility

to offer, in few iterations, a reduction by one or more orders of magnitude of the

normalized and MATLAB-style residuals of the solutions computed by MATLAB

function care, makes the Newton solver an attractive support tool for solving CAREs.

AKNOWLEDGMENT

This work was partially supported by the Institutional research program PN 1819

“ dvanced IT resources to support digital transformation processes in the economy

and society — RESINFO-T ” 0), project PN 9-01-0 , “New research in

complex systems modelling and optimization with applications in industry, business

and cloud computing”, funded by the Ministry of Research and Innovation, Romania.

REFERENCES

[1] B. D. O. Anderson and J. B. Moore, Linear optimal control, Prentice-Hall, Englewood Cliffs, New

Jersey, 1971;

[2] D. A. Bini, B. Iannazzo and B. Meini, Numerical solution of algebraic Riccati equations, SIAM,

Philadelphia, 2012;

[3] P. Lancaster and L. Rodman, The algebraic Riccati equation, Oxford University Press, Oxford,

1995;
[4] V. Mehrmann, The autonomous linear quadratic control problem. Theory and numerical solution,

Springer-Verlag, Berlin, 1991;

[5] V. Sima, Algorithms for linear-quadratic optimization, Marcel Dekker, Inc., New York, 1996;

 Accurate Linear Quadratic Optimization in Aviation and Space Applications

294

[6] W. F. Arnold, III and A. J. Laub, Generalized eigenproblem algorithms and software for algebraic

Riccati equations, Proc. IEEE, vol. 72, no. 12, pp. 1746–1754, 1984;

[7] A. J. Laub, A Schur method for solving algebraic Riccati equations, IEEE Trans. Automat. Contr.,

vol. AC–24, no. 6, pp. 913–921, 1979;

[8] P. Van Dooren, A generalized eigenvalue approach for solving Riccati equations, SIAM J. Sci. Stat.

Comput., vol. 2, no. 2, pp. 121–135, 1981;
[9] R. Byers, Solving the algebraic Riccati equation with the matrix sign function, Lin. Alg. Appl., vol.

85, no. 1, pp. 267–279, 1987;

[10] J. D. Gardiner and A. J. Laub, A generalization of the matrix sign function solution for algebraic

Riccati equations, Int. J. Control, vol. 44, pp. 823–832, 1986;

[11] S. J. Hammarling, Newton’s method for solving the algebraic Riccati equation, NPC Report DIIC

12/82, National Physics Laboratory, Teddington, Middlesex TW11 OLW, U.K., 1982;

[12] E.-W. Chu, H.-Y. Fan and W.-W. Lin, A structure-preserving doubling algorithm for continuous-

time algebraic Riccati equations, Lin. Alg. Appl., vol. 386, pp. 55–80, 2005;

[13] P.-C. Guo, A modified large-scale structure-preserving doubling algorithm for a large-scale Riccati

equation from transport theory, Numerical Algorithms, vol. 71, no. 3, pp. 541–552, 2016;

[14] A. Lanzon, Y. Feng, B. D. O. Anderson and M. Rotkowitz, Computing the positive stabilizing

solution to algebraic Riccati equations with an indefinite quadratic term via a recursive method,
IEEE Trans. Automat. Contr., vol. AC–53, no. 10, pp. 2280–2291, 2008;

[15] P. Benner, R. Byers, V. Mehrmann and H. Xu, Numerical computation of deflating subspaces of

skew Hamiltonian/Hamiltonian pencils, SIAM J. Matrix Anal. Appl., vol. 24, pp. 165–190, 2002;

[16] P. Benner, V. Sima and M. Voigt, Algorithm 961: Fortran 77 subroutines for the solution of skew-

Hamiltonian/Hamiltonian eigenproblems, ACM Trans. on Math. Softw., vol. 42, article 24, pp. 1-

26, 2016;

[17] P. Benner, V. Mehrmann, V. Sima, S. Van Huffel and A. Varga, SLICOT — A subroutine library

in systems and control theory, in Applied and Computational Control, Signals, and Circuits, B. N.

Datta (Ed.), Birkhäuser, Boston, vol. 1, ch. 10, pp. 499–539, 1999;

[18] P. Benner, V. Sima and M. Voigt, -norm computation for continuous-time descriptor systems

using structured matrix pencils, IEEE Trans. Automat. Contr., vol. AC-57, no. 1, pp. 233–238,

2012;

[19] V. Sima and P. Benner, Solving SLICOT benchmarks for continuous-time algebraic Riccati

equations by Hamiltonian solvers, in S. Caraman, M. Barbu and R. Solea (Eds), Proceedings of the

2015 19th International Conference on System Theory, Control and Computing, pp. 1–6, Cheile

Gradistei, Romania, October 14-16, 2015;
[20] V. Mehrmann and E. Tan, Defect correction methods for the solution of algebraic Riccati

equations, IEEE Trans. Automat. Contr., vol. AC–33, no. 7, pp. 695–698, 1988;

[21] B. Ciubotaru and M. Staroswiecki, Comparative study of matrix Riccati equation solvers for

parametric faults accommodation, in Proceedings of the 10th European Control Conference, pp.

1371–1376, Budapest, Hungary, 23-26 August 2009;

[22] P. Benner, Contributions to the numerical solution of algebraic Riccati equations and related

eigenvalue problems, Thesys, Fakultät für Mathematik, Technische Universität Chemnitz–

Zwickau, Germany, 1997;

[23] V. Sima, Computational experience with a modified Newton solver for continuous-time algebraic

Riccati equations, in J.-L. Ferrier, O. Gusikhin, K. Madani and J. Sasiadek (Eds.), Informatics in

Control Automation and Robotics, Lecture Notes in Electrical Engineering, vol. 325, ch. 3, pp. 55-

71, Springer International Publishing, Switzerland, 2015;
[24] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,

S. Hammarling, A. McKenney and D. Sorensen, LAPACK users’ guide: Third edition, SIAM,

Philadelphia, PA, 1999;

[25] F. Leibfritz and W. Lipinski, Description of the benchmark examples in COMPleib 1.0, University

of Trier, Germany, 2003.

