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Abstract: The phenomenon of stimulated optical transition in anisotropic crystals that has 

been experimentally studied in our quantum lab; both its mathematical modeling and numerical 

simulation are approached. In order to evaluate the stimulated transition probability a revision of 

the perturbation theory equations is performed. For these equations the states spectrum of a 
quantum system being perturbated by an other system (in the frame of the quantum physics 

Hilbert space) is considered. Our formalization acts in accordance with the formal framework of 

information theory (characterized by: entropy, conditional entropy and mutual information) 
applied to two sources that interact, one being a perturbation of the other. In order to perform the 

numerical simulation the analytical relations are systematized. Some particular temporal patterns 

of the perturbation (e.g. (quasi) -rectangular or (envelope) -sinus, mono-pulse) and their 
corresponding transition probabilities are analyzed, then normalized and afterwards graphically 

represented using MathCAD. 
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1. INTRODUCTION 

 

The mathematical modeling and computer numerical simulation are necessary steps in 

the design of engineering quantum optics applications for quantum information 

processing. 

But [1] “these subjects follow either a semi-classical approach (often oversimplified), 

or a full quantum approach (often too difficult)”. This is the motivation for this revised 

physical modeling based on mathematical rigorous description. 

In order to numerically evaluate the stimulated transition probability of a system when 

interacting with an other system (in the frame of the quantum physics Hilbert space [2]) a 

revision of the perturbation theory equations is performed in agreement with the 

requirements of our software tool (mathCAD). 

This formalization is in accordance with the formal framework of the information 

theory applied to the interaction of two sources, one of each being the perturbation of the 

other. The entropy, conditional entropy and mutual information are described. 

In the case of quantum optics applications, when one desires to transmit information 

using “photons” it is unrealistic to work with planar harmonic waves, requiring "wave 

packets" delimited in time and space [3]. Instead, the impulsive waveforms are used, 

enabling the study of the temporal behaviour of both perturbation and light stimulated 

atoms. 
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Thus, the modeling and simulation succeeds to overcome the previously encountered 

difficulties as follows: a) to understand the treatment with real and complex signal 

representation (Fourier) for engineering applications; b)-to solve the equations 

complicated due to too many qualitative and quantitative approximations; c)- to be in 

agreement with the software requirements. 

 

2. THE EVOLUTION OF STIMULATED QUANTUM SYSTEMS 

Qualitative considerations 

 

We perform a qualitative analysis with C
 

class functions, as follows: 

 a  a stimulated quantum system: A],[:  ttta  

   a perturbing quantum system (e.g. electromagnetic field): KR],[:,  ttt  
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We emphasize the following algebraic structuring: 

 intensive composition of a disjoint systems Aa  & Bb , disjoint aa  bb : 

CBA  :bac   binary composition law, (“superposition” by interaction), 

intensive in the sense that any event ba  in the compound system ba   is defined by 

baba   : , the intensive composition of an event a  in the system a  with an event 

b  in the system b ; we have abba  , aaa  . 

 hybrid composition (  a  and    isolated systems) as a limiting case of integrated 

compound case: 
   

)(lim&
 ,







aa
aa

, 
   

)(lim&
 ,

aa
aa







. 

 absence of perturbation in composition (at 0:  or 0: tt   or  tt : ): 

ttt aaa  )()( 0,  ttt aaa  )()( 0,  

000
)()( , ttt aaa    

000
)()( , ttt aaa    


 ttt aaa )()( ,  


 ttt aaa )()( ,  

 interaction reduces non-interaction:  aaaa &&  and we define: 

protocol (agreement) subsystems: 

aaaa   &     by a ,   aaaa &:   a  by   

a   aa &              a    &aa  

ttttt aaa    ,,, &)(    ,,, &)( ttttt  aaa  

and we have )()( aa   , that is the protocol is mutual. 

 the protocol is disjunctively filled with the composition 

 )()( aa  ,  aaa &)()(   ,  )()&(   aaa  

 )()(  aa ,   &)()( aaa  ,  )()&( aaa    
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 the absence of perturbation abolishes the protocols: 

 tttttt aaaaaa &)( 0, ;  tttt aa 0,0,   


000000

&)( , tttttt aaaaaa   


 tttttt aaaaaa &)( , ; 

 tttt aa   ,,  

 conditioning:  

aa ||   , ttt aa |)|( ,,     the perturbing   under conditions imposed by a  

 || aa  ,   ,, |)|( ttt aa   the chosen system a  under conditions imposed by    

"imposed conditions"  "constitutive laws" of the interaction 

 the absence of perturbation abolishes conditionalities: 

 |)|( 0, tt aa    |)|(
00 , tt aa   


|)|( , tt aa   

 tt aa |)|( 0,  
00

|)|( , tt aa   
 tt aa |)|( ,  

 conditionalities are disjunctively complemented by protocols 

 )()|( aa ,  )(&)|(  aaa ,  )|(  aaa  

 )()|( aa ,  )(&)|( aa  ,  )|( aa   

 conditionalities determine the compositions (general relations of  interactions) 

)|(&)|(&])&[()]|([&)()&( aaaaaaaaa  

)|(&)|(&])&[()]|([&)()&(  aaaaaaaaaa   

)|(&)|(&  aaaaa , )(&&&)(& aaaa   

These relationships, about the idea of of interaction system vs. perturbation, are in 

agreement with the formal framework of information theory: regarding: state vs 

probability / entropy, protocol vs mutual information / transinformation, interaction vs 

conditional probabillity / conditional entropy. 

 

3. QUANTITATIVE OPERATOR CONSIDERATIONS 

 

According to quantum physics we have the self-adjoint operators: 

   temporal pulse operator (
ta

 , 
 ,t

 , 
 ,t)(a ) 

 H  hamiltonian operator (
ta

H , 
 ,t

H , 
 ,)( taH ) 

 the quantum temporal condition (operator format):  H  

 the total time derivation of an operator A  using the Hamiltonian commutator: 

],[// AHAA  tdtd  so that ttdtd  /],[// HHHHH   

The general relationships of the quantitative form of interaction are: 

  - integrated composition: 
  ,,,,, )()()()|( tttttt |aaaaa HHHHHH    

& - hybrid  composition (  a| ): 
tttttt aaaa HHHHHH 

  ,,,, )&()&(  

For the isolated (unperturbed - time stationary) system a  we have  tt /a  and the 

time flows uniformly ( 0H  t
t
/a ), so that 0HH  tdtd

tt
// aa ; aa HH 

t
. 

 the equations with eigen states and values are: nn ssH  nEa , nn ss  na ;  with 

nnE    & spectral differences: pm

mp EEE :, , pm

mp  :, ; mpmpE ,,   . 

 the orthonormal basis }|{ n Ins  of eigenstates has the properties: 

mpmpmp ssssss  m

p

m

p  , 
m

n

n

p   mnnp ssss ,  
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 the quantum state of (isolated) ta , in general format, is a linear combinations 
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where usually 0:: 0  tto . 

 We analyze the state for hybrid system aa &&    vs. for composed system a ; 

so aaaa HHHHHH   &&  and we have two formats:   

  format: aaaaaa   )(&)(&  

   aaaaaa HHHHHHHH  

   aaa HHHH :    aaa    HHHH :  

aaaa HHHHHH         aa H0H ,    

  format: )|(&)|(&  aaaaa  ,  || aaaaa HHHHHH    

aaa HHH   :|  (perturbant hamiltonian)  HHH  aa :|  (perturbed hamiltonian) 

aaaa HHHHHH       a|  & aa |  

We describe perturbing action in the format aaa | HHH  , as follows:  

 the quantum system state a  (general format) is   

n
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 aa  represent the probability 

that the system a  to perform in the temporal interval ],[ 0 tt  transition from state p

t0
a  in 

the state 
m

tt  ,a  or otherwise, from state 
p

tt  ,00
a  in the state m
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We proceed to perturbation series expansion of interaction hamiltonian: 
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  /: || ,, tttt aa HH  is the parametric Hamiltonian perturbation mean density:  
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which can be solved iteratively.  
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Introducing the complex representation: 
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5. TEMPORAL PERTURBATION – MONOPULS 
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6. TIME PERTURBATION - RECTANGULAR MONOPULS 

 

In this case the “temporal perturbation - monopuls“ has 1)( tu , 0)1(:  cosArct , 

1)0cos(:)( tu , TtTtu   000
:0   and the width of the time window of the 

perturbation is timed with a own clock, locked 0/:0  Tu ; 0),( ,0 0
 uTT    

&  0//  u . In the relation (1) we have 0'  and by direct calculation 
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   The transition probability, with some versions, is: 
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The approximation with  -Dirac distribution is often used in qualitative analyzes. We 

have MathCAD representations (fig. 1) for the laser THz domain. For a given frequency 

the transition probability varies periodically with the duration of perturbation (fig. 2). 
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(a) (b) 

FIG. 1. Rectangular perturbation mono-pulse case: (a) transition probability factor in our laser frequencies 

domain frequency for different durations of perturbation; (b)  -Dirac approximation 

    

 
 

FIG. 2. Rectangular perturbation mono-pulse case: 

transition probability factor (for a given laser frequency) vs duration duration of perturbation 

 

7. TIME PERTURBATION – SINUSOIDAL MONOPULS 

 

In this case we have )cos(:)( ttu  , 000 )(:   ttt ; 00 2 f  , 00 /1: fT  , 

Tttu   00000 ])([:  , T  :  and the width of the time window of the 

perturbation is timed with a own clock Tu /:0    & 0//  u . In the relation (1) 

0'  t  and by direct calculation (including the prolongation by continuity) we obtain:   
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   The transition probability, with some universal functions, is: 
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where, in complex format we have 



APPLIED MATHEMATICS, COMPUTER SCIENCE & IT 

354 

),,(:),,( 0000  TTSS

T  ,    

2

,

0
2/

)(
:),,( 0

T

u
tt

u

S


        












































0

2

0

4

0

2

0

)(2

0

)(2

22

00

||                                      
4

1

||       
)(

1

)(

1

4

1

:),,,(

00

0

0

0

0

0

ff
e

i

eTf

e

ff
eff

e

eff

e

T
fTf

ii

Tfi

i

Tffi

i

Tffi

S
















  

or in real format 
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This sinusoidal monopuls is an ideal approximation of a more realistic case 

(MathCAD represented in fig. 3). With reduced notation ),()2/,,,( 0 TffTfS    we 

have (fig. 4) the frequency spectrum în the approximate idealized rectangular envelope 

for sinusoidal perturbation. 

 

 

 

 
(a) (b) 

 

FIG. 3. Sinusoidal perturbation mono-puls case: 

(a) realistic sinusoidal envelope; (b) idealized rectangular envelope 

 

 
 

FIG. 4. The frequency spectrum 
sinusoidal perturbation mono-puls case, idealized rectangular envelope 
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8. ON THT SECOND-ORDER APPROXIMATION 

 

If the initial ps  & final ms  states ( mp  ) are not directly coupled by perturbation 

Hamiltonian 
tttt aa || 0,,  
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st 
- order approximation !) because 0)(, tmpH , but if 

ps  & ms  are indirectly coupled  via a states 
ns  we evaluate (2

nd 
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)()( mnpmp sssss   in the context of the superposition principle of quantum 

physics states, as follows: 
2|2||

|, ||||
,,0

pmpmpm

tt tttt
ccP

    aa , 
)(|| 0

,,

ttipmpm m

tttt
ec



 


 
aa , pm

t

pm

tt

|

2,

2|

,


 a  and 







mn

pn

t

timnti

pm

t mnmn

ete
dt

d
i ])([ |

1,

,

|

2, ,
0

,


  H , 2

nd 
- order approximation, based on: 

0')'(

0

,
0

,

',|

1, 


 


 t

t

tinp
ti

pn

t dtet
i

e np

np




 H


 1
st 

- order approximation; by integration: 

  
















 



n

t

t

t

t

ttimnnp
ti

pm

t

mnnp

mp

ettdtdt
i

e

0 0

,,
0

, ''

)'''(,,

2

|

2, )''()'('"
)(




 HH


 

2
''

)'''(,,

4

|

|,

0 0

,,

0
)''()'('"  

































mnp

t

t

t

t

ttimnnppm

tt

mnnp

ettdtdtP 



HH


 

The approximate calculation of this iterated integration has led (for example in the 

rectangular monopuls, single intermediate energy level at %50  ) to the relationship: 
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The maximization of the transition does not coincide with the laser frequency (fig. 5). 

 

  
(a) (b) 

 
FIG. 5. Second order approximation factor (of transition probability) frequency analysis 

rectangular perturbation mono-pulse case: (a) normalized modulus; (b) phase of factor 

 

9. CONCLUSIONS 

 

 Both mathematical modeling and numerical simulation of stimulated transition 

probabilities for quantum optics have been performed. 

 Revised perturbation theory equations in the states spectrum of a quantum system 

have been established in order to evaluate the stimulated transition probability (in the 

quantum physics Hilbert space). 
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 The formalization is in accordance with the formal framework of information 

theory (regarding: entropy, conditional entropy and mutual information adapted to the 

Hamiltonian Formalism). 

 The operatorial relationships have been used distinctly from matrix-type 

relationships (Dirac formalism with “bra” and “ket”) and have been intended exclusively 

for the numerical simulation. 

 Analytical relations have been rewritten and systematized  

 Particular temporal patterns, (quasi)-rectangular or (envelope)-sinusoidal, 

mono-pulse of the perturbation and corresponding transition probabilities were analyzed 

and represented normalized by MathCAD. 
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