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Abstract: In the recent years, Radio Frequency Identification (RFID) has included smart tags 

which can monitor the various surroundings of an area. To create such a tag one must have an 

accurate measurement system. Sometimes, noisy signals are generated because of the 

surrounding changes. In the following paper we will propose an improved Kalman filter to obtain 
a better noise reduction and a more precise data acknowledgement. The Kalman filter 

performance stand in their noise covariance’s which are called R and Q variables. These 

variables are found in the Kalman filter algorithm. Still, to obtain the best results we must choose 
the correct R and Q variables. More specifically, the main purpose of the paper is to propose an 

improved Kalman filter to locate an aircraft. The covariance is used only for a simple 

architecture and could be adjusted using neural networks. Using this method, we can obtain a 

more detailed database from the RFID tags. In a simulation, the proposed improved Kalman filter 
will show a more précised location of an aircraft compared to the old gain amplifier, due to the 

multitude of sensors which are being used. The performance of the Kalman filter will be 

demonstrated in a simulation program. 

 

1. INTRODUCTION 

 

In the technology field of Radio Frequency Identification (RFID), an enormous 

variety of RFID sensors have emerged. RFID Sensor Labels are also known as RFID 

intelligent tags, which measure and calculate data. Intelligent RFID tags functions can be 

combined to form a single small-size device. These functions are: detection, computing 

and communication. The need for solutions regarding detection and localization is 

highlighted in legislative and regulatory demands. Here we have requirements for certain 

industries such as: dangerous goods transport, pharmaceuticals, explosives, etc. Low 

temperatures is a key requirement for pharmaceutical products and  perishable items. [1] 

Modern RFID systems become incredibly complex, thus intelligent system demands 

keep rising, as well as one-sensor RFID tag monitoring systems. Often they are unable to 

meet the new needs of society. Intelligent RFID tags combined with multiple sensors and 

container with various products can provide integrated services and information to 

managers and customers. This can be achieved by combining different sensor data from 

its detection materials.  

 

For example, the information provided by temperature, humidity and oxygen sensors 

from an RFID tag attached can provide conditions for an item/product and protect 

customers. So far, an intelligent single sensor RFID tag provides the information using 
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multiple labels. Finally, by integrating multiple sensors into an RFID tag, we can imply a 

low-cost, high-power RFID system with an adequate radius [2]. 

Multiple sensors can be combined to form a smart RFID tag. These sensors: resistive, 

capacitive or inductive can extract important data which represents various states, such 

as: freshness or vitality. In a multi-sensor environment, RFID tags obtain data using one 

or more ports.  

The Kalman filter has been widely applied to solve the problem of measuring system 

noise. The Kalman filter optimally estimates model states with known parameters. 

However, variations of measurement noise should be evaluated from empirical noise data, 

as it is difficult to obtain data in most cases. If the measurement noise statistics are 

unknown, the Kalman filter can not guarantee optimal resolution of the problem [3]. To 

solve this problem, we propose an adaptive filtering method based on the Kalman filter 

using neural networks. 

 

2. SENSITIVE ENVIRONMENT 

 

When system designers organize multi-sensor system, it is not sure that each sensor 

will work properly due to factors that disrupt their activity. These factors: noise and 

interference are caused by the measurement system in a multi-sensor environment. The 

RFID Multi-Sensor System is composed of a multi-electron system and a sensor board 

combined with sensors, as shown in Figure 1. The multi-electronics system is a RFID 

detection platform and is connected to a PC via a USB port to measure and compile data. 

  

 

 

 

 

 

 

 

 

FIG. 1. Block diagram of the measurement system configuration 

 

3. IMPROVEMENTS FOR KALMAN FILTERS 

 

The Kalman filter requires accurate knowledge of all dynamic processes and noise, 

even when the noise processes are zero, meaning there is white noise. If the theoretical 

and the actual behavior do not match, there will be a divergence problem. When the error 

covariance is calculated using data from the current measurement error, we will obtain 

satisfactory results, without divergence. Kalman filter noise acts as a bandwidth controller 

and modulates Kalman gain.  

The abnormal choice of noise covariance is one of the most important factors that 

make the difference between Kalman filters. The objective of this method is to estimate 

the noise covariance. Thus, by using neural networks we will try to prevent Kalman filter 

divergence. 

The variables  and  represent, respectively, the process and the noise 

measurement. They are supposed to be independent of each other, and with normal 

probability distributions [4,5]: 
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Matrix A in an differential equation (1) relates the state to the previous k-1 state with 

the state at the current k stage.Matrix B makes reference to the optional control input, 

while matrix H correlates the state with the  in the measurement equation (2): 

  

                      

(3) 

 

                       

(4) 

 

Q represents the process noise covariance and R is the covariance of the measurement 

noise. Derivating the Kalman filtering formula, we start with an equation that calculates a 

state estimate of previous results. Simultaneously we calculate a linear combination of an 

a priori estimate and a weighted difference between a real and a prediction measurement 

[4,6] . 

Time equations are responsible for moving the current state and error covariance 

estimates. This will be done so that we can obtain a priori estimates for the next step. 

Measurement update equations are responsible for the feedback, and they also incorporate 

a new measurement in a priori estimation so that we can obtain an improved posterior 

development: 

  

         

(5) 

 

  is an a priori estimation of k, and , and  to be our posterior state 

estimate for the measured k-stage.  is the noisy observation vector.   is a 

presumption for the pre-measurement value.  can be presented (6): 

  

                     

(6) 

 

The Kalman gain  minimizez a posterior state estimate by incorporating 

measurements. Here   is the Kalman filter equation. The purpose of this 

equation is to find a Kalman gain . Equation (7) expresses the posteriori estimative 

errors: 

  

                      

(7) 
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The derivation of the covariance equation is shown by equation (8): 

  

  

(8) 

 

The value above is equivalent to minimizing traces of the a posteriori estimative 

covariance matrix. The trace is minimized when the matrix derivative is zero, as in 

equation (9). Solving equation (9) for  leads to Kalman's gain, which is the optimal 

gain (10): 

                          

(9) 

 

                  

(10) 

 

Kalman filters estimate a process by using a form of feedback control. In other words 

the filter evaluates the state of the process, while at the same time obtains a feedback. In 

common parts, we can devide the Kalman filter equations into two groups: time update 

equations and measurement update equations. Time updating equations can also be 

considered as predictive equations, while equations for measuring updates can be 

considered as correcting equations [7]. Still, in the final estimation algorithm we can 

resembles the correct predictors or algorithms for solving numerical problems. 

 

3.1. Kalman Filter Improvements 

 
FIG. 2. Using a Kalman filter to improve radar data 
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FIG.3. The results of the Kalman filter for radars 

 

Comparing the results of the Kalman Joint Method and the Kalman Enhanced Filter, 

we examined the simulations with an assumed measured covariance. The Kalman filter 

can offer optimal solutions, if the system model is correctly defined and if the 

measurement and system noise statistics are fully acknowledge [8]. Figure 3 presents the 

simulation results with the assumed measured tension of the Kalman filter. This is done 

so we can evaluate the performance of the Kalman joint filter.  

 

4. CONCLUSSIONS 

 

These results show that the Kalman filtering method is good for reducing 

measurement noise. The previous method for determining the measurement noise 

covariance (R) for the Kalman filter depends on the analysis of the empirical data of each 

sensor and its modification. Because there are no perfect sensors, their performance are 

reduced with time. This determines the uncertainty in the previous Kalman filter method, 

which has a considerable impact on the performance of the Kalman filter [10]. 

The Kalman filter R value affects the weight on which the filter applies between 

existing process information and the most recent measurements. Failure in any of them 

may result in the filter being suboptimal or even cause divergences. 
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