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1. INTRODUCTION 
 

The goal of an optimal control problem (O.C.P.) of a dynamic system is to determine 
a set of state variables, of certain control and driving functions  satisfying an optimization 
criterion, performing the extremization of a quality index in this way. This performance 
index is a functional depending on these elements and time and spatial restrictions.. 
Practical applications requirements for these functionals are optimal controls of the 
following type: achievement of minimal time, minimum fuel consumption, energy, to 
achieve extreme performance [4,10,13]. Dynamical systems from different domains are 
generally represented generally by nonlinear equations with parameters, while internal or 
external disturbances occur leading to unstable solutions related to a free balance state. 
The stabilization of these regimes is done by using automatic controls that actually fast 
reacts for optimal control and routing [3, 5-7, 12, 14]. Lurie [8], [4], [13] and Popov [11], 
[4], [3] methods are known to automatically adjust the absolute stabilization, with 
applications. This paper, for optimal control of stabilizing angular velocities of aircraft 
and missiles, deals with the "Minimum Time Criteria" and the Pontreaguine extremal [9], 
[1], [7], with results and studies in different applications [5], [6], [7]. The optimal control 
function will have 2 components: ( )21 u,uu . 
 

2. OPTIMAL CONTROL IN ANGULAR SPEED STABILIZATION 
REGARDING FLUVIAL OR SPATIAL NAVES 

 
We will consider a multi-propelled nave with axial-cylinder symmetry, as in figure 1. 

We choose a system of axes (Ox1x2x3) as principal axes of inertia, where O is the masses, 
as a solid body rigidly fixed in point O. The nave rotate with the angular velocity 
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( )321 ,, ωωωω , where iω  are the rotation speeds around the axes Oxi, 3,1i = ; Ox3 is the 
axis of longitudinal symmetry.  

Symmetrical with these axes the ship has 
turbojet propulsion generators ( )2

1
1
11 G,GG  

on Ox1 with two nozzles, ( )2
2

1
22 G,GG  on 

Ox2 and generator G3 on Ox3, with traction 
purpose. These reactive nozzles can create 
moments, being accompanied by gas 
dynamics wings, integrating gyroscopes, 
small jet shutters that can help to guide and 
stabilize the angular velocities regime. The 
controller [3], [5-7] is equipped with sensors 
and microprocessors for data processing and 
it may (with a rapid response) control the 
disrupted regime for optimal stabilization 
[12], [14]. Disturbances considered here may 
be due to turbines fuel, meteo external agents 
or environmental density. These naves may 
be rockets, spacecraft, capsule, modules, 
mega-drones or submarines, torpedoes, etc 
[8], [12], [14].  

The angular velocities are ( )tx11 =ω , ( )tx 22 =ω , ( )tx 33 =ω , the inertia momentums of 
the body are I1, I2, I3 - symmetrically ( )III 21 == , see figure 1.  
We write the equations of angular velocities disturbed by external moments ( )tMi  [10], 
[12], [14]: 

 
( ) ( )
( ) ( )
( ) ( )








+−=
+−=
+−=

tMxxIIxI
tMxxIIxI
tMxxIIxI

3212133
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             (1) 

We suppose that moments Mi(t) are caused by propelling forces ( )321 g,g,gG : 
 ( )tglh 11 ⋅= , ( )tglh 22 ⋅= , ( )tghh 33 ⋅=           (2)  
Taking into consideration the symmetry: I:II 21 == , we have: 
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System (1) with ( ) 0tMi =  is in stable equilibrium around ( )0,0,0O  (undisturbed).  
Let’s suppose that at 0t 0 =  we have the disturbed position 
 ( ) 11 0x α= , ( ) 22 0x α= , ( ) 33 0x α=             (4) 
If the traction g3(t) is known, than we have  

 ( ) ( )∫ ττ+α=
t

0
3

3
33 dg

I
htx                (5) 

x1 

1ω
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x3 
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2ω

1
1
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1
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G
2
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G
G3 

FIG. 1: A multi-propelled nave 
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This shows that x3 can be controlled independently of x1 and x2, but x3 can influence 
in (3) variables x1 and x2. We suppose that the rapid reaction response time is short and x3 

may be considered constant 33x α= , so 0g3 ≅ .  We also suppose that forces g1, g2 are 
bounded 
 ( ) Ltg1 ≤ , ( ) Ltg 2 ≤                      (6) 

In this case the system (3) is linearized and we introduce the control function 
( ) ( )( )tu,tuu 21  to control optimum stabilization of disturbed solution to O(x1=0, x2=0) for 

system (7) in minimal time.  

 
( )
( )




≡+ω−=
≡+ω=

2212

1121

ftkuxx
ftkuxx




                   (7) 

where: 

 

( ) ( )













==
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>ωα
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=ω

2,1i;
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tg
tu

0k;L
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I
II
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i

3
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                   (7’) 

We note that state equations (7) in the phase space ( )21Oxx , ( ) ( )( )tx;txX 21 , with 
control parameters ( ) ( )( )tu;tu 21 satisfy the conditions: 

 
( )
( ) [ ]1,1:U;

1tu1
1tu1

2

1 −=




≤≤−
≤≤−

                 (8) 

and hence the allowable plan U (u1Ou2) is a compact square. 
The technical sense in equations (7) for Ui (t) is to find forces ( ) ( )tutg ii ↔  to reduce 

speeds ( ) ( )0,0x,x 21 →  on optimal paths starting from ( )210 ,M αα  at time t0 to reach 
the final target O(0, 0) at the time tf > t0 so the transfer time to be minimal (o.c.p.) [2], [3], 
[9], [7]. 
 

3. MINIMAL TIME CRITERION. EXTREMUM PRINCIPLE 
 

Let’s consider a system described by the state equations 
( ) ( )( ) [ ] n,1i,t,tt,tu,tx,tfx 10ii =⊆∈= +R               (9) 

where the state function is ( ) ( ) n
in21 Xx,x,...,x,xtx R⊂∈=  and the control function 

( ) ( ) m
m21 Uu,...,u,utu R⊂⊂=  with nm ≤ . 

Functions fi meet the regularity conditions and U is the allowable domain of parameters 
ui(t). System (9) respects the given initial conditions (I): 

(I) ( ) n,1i,Rxtx 0
i0i =∈=                 (10) 

determining the disturbed initial state 00 SX ∈ , where S0 is the variety on which X0 is 
fixed.  

Assuming that Cauchy problem (9) (10) has ( ) 0
0

0ii tt,u,x,t,txx ≥=  as unique 

solution, we request that this trajectory transfer the system in the state 11 SX ∈ , where X1 
is fixed on S1 (target (final) state - usually steady state in the final moment t1 = tf horizon 
pool) - 10 tt ≤ : 

(F) ( ) n,1i,Rxtx 1
i1i =∈=               (11) 
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The final moment t1 will be determined using "minimal time criterion" - rapid 
response ( ) *

01Uu
tttmin =−

∈
, extremizing the performance index J = J [u] [1], [2], [9]. 

Let’s consider the index functional, see [1], [9], [10]: 

( ) ( )∫=
1

0

t

t
0 dtt,u,xfuJ                 (12) 

where  f0  is a characteristic function (Lagrangean) with: 
( ) ( ) ( ) 00000 Ctx;u,x,tftx =≡              (13) 

The optimal control problem (P.C.O.) is to determine an optimal admissible command 
Uu* ∈  to extremize (12) so that the original system (9) (10) (I) is transferred to the final 

system (11) (F) in minimal time (minimum criteria). 
"Extreme Pontriaguine principle" (P.E.) will be calling to solve it. We auxiliary introduce 
the multipliers ( ) ( ) ( ) ( )( )t,...,t,tt n10 λλλ=λ  as non-null solution of the adjunct system 
[1] [9] [7] [10]: 

( ) n,1i,ct;
x
f

i0ii

n

0j 0i

j
i ==λλ









∂

∂
−=λ ∑

=

             (14) 

associated with (9)…(13) with arbitrary constants  ci (but not all of them arbitrary), which 
will finally become the controller parameters. 
We note that (14), if it’s linearized: BUAXX +=  in the final null position (O) vicinity,  

( )
0j

i
ij x

f
aA 











∂
∂

==  i.e. λ−=λ 'A  , where λ−=λ 'A , 'A  is the transposed matrix. 

We consider the lagrangean like f0 and (12) : 
( ) ( )( ) ( ) 1fx,1t,u,xftu,tx,tL 000 ≡=≡≡             (15) 

( ) ( ) ( ) ( ) *
01u

*

u01

t

t

tttminuJuJmin;ttLdtuJ
1

0

=−==−== ∫        (16) 

We build the generalized Hamiltonian [9] [10] associated with (11) (12) (13) (14): 

( ) ( ) ( )( ) ∑
=

λ+λ=λ
n

1i
ii00 xxtu,t,tx,tH              (17) 

where 1fx 00 ≡= , with 0
x
f

0

0
0 ≡λ








∂
∂

=λ , 00 C≡λ  

From (11) and (17) we have: 

( )∑
=

λ+λ≡
n

1i
ii0 u,x,tfH                (18) 

and we built the canonic attached and adjunct system [1] [2] [7] [9]: 

i
i

Hx
λ∂
∂

=                    (19) 

[ ]10
i

i t,tt,n,1i,
x
H

∈=
∂
∂

−=λ               (20) 

with [ ]1,1u i −∈   and initial conditions ( ) 0
i0i xtx = ,  ( ) i0i ct =λ . This system is: 

( ) ∑
=










∂

∂
λ−=λ=

n

1j 0i

j
iiii x

f
;u,x,tfx              (21) 
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with 2n  unknowns: xi, iλ  and 2n conditions, where u* is previously and optimal chosen.  
“Pontreaguine minimum principle” theorem ([1] [2] [9]): A necessary condition for the 
existence of an optimal solution Uu* ∈  [ ]( )1,1x i −∈  minimizing (11), 

( ) ( ) ( ) *
01u

*

u
tttminuJuJmin =−≡=  associated with (9), (10), (11), (18), where 

( ) ( ) ( )λ∀=λ=λ ,x,t,0u,,x,tHu,,x,tHmin **

u
 is that trajectories xi, iλ  respect  (19), 

(20), (21) [ ]*
0 t,tt∈∀  with: 

( ) ( ) ( ) ( ) 0C,u,,x,tHHmin;0u,,x,tHu,,x,tH ******* =λ=≥λ≥λ      (22) 
Remarks:  
1) We may take 1c00 ≡=λ  and H(t) is minimized determining the vector 

( )n21 ,...,, λλλ=λ  so that the speed ( )ixX  =  projection on λ  vector to be minimum: 









λ∑

=

n

1i
ii xmin  . 

2) After building H, (17) and (18)  with H = H(u),  we find u*  with 1u1 i ≤≤− , 

generally with 0
u
H
=

∂
∂ ; but, if H is linear in u,  H = a+bu1+cu2, then, according to linear 

programming with  0H ≥  in compact square ( ) Utu ∈  included in (H, u1, u2) space, the 
minimum H(u*)=0  will be in the square tips ( ) ( ){ }1u,1u,1u,1uu *

2
*
1

*
2

*
1

* −===−== ; 
the solutions will be ( ) ( )** u,t,u,txx λ=λ= .   
. 

4. ANGULAR SPEEDS STABILIZATION OPTIMAL CONTROL 
 

We still apply the algorithm (9) - (22) to (1) – (8); and build Hamiltonian (17) (18) 
associated with the system (7): 

 0kukuxx1xx1H 221112212211 ≥λ+λ+ωλ−ωλ+=λ+λ+=       (23) 
We note that ( ) 2121 cubuau,uHH ++==  is linear and positive in the compact square 

( ) [ ]1;1tu1 −∈  , ( ) [ ]1;1tu 2 −∈ ; so in the space (H, u1 , u2) H has a null minimum in the 
square tips: ( ) 0u,uHHH *

2
*
1

Uk
min ==≥
∈

 

So, if ( ) ( )2
*
21

*
1 sgnu;sgnu λ−=λ−=               (24) 

the trajectories ( )1u,1uC 211 −==±  or ( )1u,1uC 211 =−=  will be obtained, and they 
will tend to origin ( )0x,0xO 21 == . 

The system is autonomic and u* is pulse-type. It results that the controller will be a 
relay-type one, acting with or without commutation [1] [2] [7]. We solve the canonic 
system (13)(14), effectively (7)  with initial conditions  ( ) 2,1i,0tx i0i =α==  and 

Uu∈ : 

 ( ) ( )
( ) ( )




ω+ωα+ω−ωα−=+ω
ω+ωα+ω−ωα=−ω

tcoskutsinkukux
tsinkutcoskukux

*
12

*
21

*
12

*
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*
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*
21        (25)  

 
2*

1
2
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2
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2*
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1
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x
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x 










ω
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ω
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ω
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ω
−       (26) 
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We note that these trajectories are circles with centers 










ω
−

ω
ku

,
ku

O
*
1

*
2*  and radius 

2*
1

2

2*
2

1
2 kuku

R 










ω
+α+











ω
−α= , but they are not reaching the target point O(0,0) for  

( )21 ,αα∀ . If in (26) 0x,0x 21 ≡≡ , we will get for ( ) ( )x=α  the compatible circles – a 
bi-local problem. 

 ( ) ( ) 










ω
−

ωω
==+ω+−ω

ku,kuO;2kR;k2kuxkux
*
1

*
2*

0
22*

12
2*

21       (27) 

       ( )00*
1

2

*
2

1
tt;

sin2kku
x

cos2kku
x

−ω+θ=θ










θ
ω

=
ω

+

θ
ω

=
ω

−
           (28) 

We note that the origin is on the circles from this family and their centers are on the 
first bisecting line (Oz1) of the system x1Ox2 or on the second one (Oz2), with the (z1Oz2) 
axis system, see figure 2a.  Choosing the optimal circles depends on the optimal control 

u* so that ( ) 0uH ** ≥ ; if the X system would be rotated with 
4
π : 4

i
exzz

π

⋅=→ , we note 

that from ( ) 0uH * ≥ , with (23) and (24) it results the trajectory on the upper (towards 
Oz1) half-circles { }*

1C  from the first quadrant and the lower half-circles, { }*
2C  from the 

third quadrant, i.e.: { } { }1u,1u:C1u,1u:C *
2

*
120

*
2

*
110 −==∪=−= ± , with centers 

respectively: 







ωω
k,kO10

  and 







ω
−

ω
−± k,kO20 . Choosing the initial point 

( ) 
10

0
2

0
1

0 C,M ∈αα  in the moment t0, corresponds to the angle 0θ  towards Ox1: 

ω
−α

ω
−α

=θ
k

k

tan
0
1

0
2

0 ;  

It may be observed on figure 2a that 



 ππ

∈θ
4

5,
40 , with 

4
t π
+ω=θ .  

 0,0,
4

51t,,0t,
4

5,
4

0
2

0
10

*
00 >α>α






 θ−
π

ω
=





ω
π

∈



 ππ

∈θ       (29) 

Analog and asymmetrically for the circle ±
2C . 

Remark: The optimal trajectories are periodical 
ω
π

=
2T ; { } { }±∪ j2j1 CC  are tangent 

half-circles, with centers 

( ) ( ) ( ) ( ) ...,2,1,0j,k1j2,k1j2O,k1j2,k1j2O j2j1 =







ω
+−

ω
+−








ω
+

ω
+ ±  and radius 

ω
=

2kR ;  

for example, if the starting point is 
j1j0 CM ∈ , then the minimal time will be 

( )



 θ−
π

ω
+

ω
= j00

* M
4

51kjt , without relay commutation.  
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There are situations when the starting point is not on the small half-circles, for 
example ( )210 ,P γγ  in the third quadrant in figure 2b. In this case we choose from ±

j2
C  a 

half-circle ±
j2

O  with radius ΓR  denoted ±Γ . This circle crosses one of the half-circles 

j1C . This is the commutation moment ( )2,1i,uu ii =−→ , the new trajectory starting 

from Q and ending in origin. 
 
 
 
 
 
 
 
 
 
  
 
 

 
 
 
 

 
We solve the adjunct system (14-20) with H  from (23): 

 ( ) ( ) −+ ==λ==λωλ=λωλ−=λ 22111221 c0t,c0t,,          (30) 
 tcosctsinc;tsinctcosc 212211 ω−ω=λω+ω=λ         (31) 

 ( ) ( )0
2
2

2
120

2
2

2
11

2
2

2
1

2
2

2
1 tsincc;tcoscc;cc ϕ−ω+=λϕ−ω+=λ+=λ+λ   (32) 

 










λ

λ
=ϕ=ϕ 0

1

0
2

0
1

2
0 tana;

c
c

tan               (33) 

We note that the adjunct system solution (31) describes a circle (32) and the period is 
the same as 

10
C , ±

20
C  semicircles one, so 

10
C  semicircle description coincides with the 

description in the same direction of the semicircle upper 02 >λ  and ±
20

C  description  

coincides with lower semicircle 02 <λ  in the plane ( )21Oλλ . 
Choosing the signs for u* and λ , c1, c2  was determined by interpreting the semi-circles 
in (z1Oz2)  as follows: 

 { }
{ }0zpentru0c;0;1u;0c;0;1u;C

şi0zpentru0c;0;1u;0c;0;1u;C

222
*
211

*
120

222
*
211

*
110

≤>>λ−=<<λ=
≥<<λ=>>λ−=

±



    (34) 

 
4.1. Optimal Control of the Un-commutated System [1], [2], [7] 

 
Let's suppose that in the initial moment t0 the system is in ( )210 ,M αα  on 

10
C  or 

±
20

C , and must reach the (target point) ( )0.0O  in minimum time *
1t ; 01 >α , 02 >α  or 

a) 

FIG. 2: Optimal trajectories 
a) With no relay commutation b) with relay commutation 

b) 

x1 

x2 
z2 

z1 

R 
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( )210 ,P γγ

( )21 ,Q ββ

±Γ20


10C
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x2 
z2 

z1 

M0 
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O11 

( )210 ,M αα
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11C

±
20C

±
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01 <α , 02 <α , iα  given in the system (x1Ox2) on 

10
C  or ±

20
C  (without relay 

switching). 
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ω
=








ω
−+








ω
− ;0t;1u;1u;2kkxkx:C *
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M0 corresponds to the angle:  

4
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ω
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ω
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ω
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We find 
ω
θ

= 0
0t  and as in ( )0.0O  

ω
π

=
ω
θ

=
4
5t f

f , it results 





 θ−
π

ω
= 0

*
min 4

51t   (37) 

 ( ) 0kk1,U,X,tH 12
***

f
*
0 =λ−λ+=λ            (38) 

With (23), (31-33): ( ) ( ) ( )( ) 0tcostsincck1c,cH 0
*

0
*2

2
2
121

*
0 =ϕ−ω−ϕ−ω++= , by 

choosing characteristic values c1, c2 with (33) on microprocessors. Analog if the system  
starts with ±∈ 200 CM . 
 

4.2. Optimal Control of the Commutated System 
 

Let's suppose that trajectories (26) are starting at t0 from ( )210 ,P γγ , ±Γ∈ 20P , not 

reaching in O; they intersect with the switching curves 

1
C  in Q and will optimally arrive 

in ( )0.0O . P0 is in the third quadrant, 01 <γ , 02 <γ  , with ( ) 



 ππ

∈θ
4

9,
4

5P00 . We 

consider the circle ±Γ20  (figure 2b), with center 







ω
−

ω
−

k,kO20  and radius 

2

2

2

1
2 kkR 








ω
+γ+








ω
+γ=Γ ; 

ω
<<

ω Γ
2k3R2k . It results the equation: 

 
2

2

2

1

2

2

2

120
kkkxkx: 







ω
+γ+








ω
+γ=








ω
++








ω
+Γ±         (39) 

The Trajectories (39) ±Γ20  will intersect (35) 

10
C  in ( )21 ,Q ββ , i.e. the commutation 

point.  We solve the system (39)(35):  by subtracting the equations the radical axis (A) is 
obtained, so we’ll solve the system {(35), (A)} [1][2][7]. 

 (A) ( ) 0x;0x;0E:k2
k4

xx 2121
2
2

2
121 >>>=






 γ+γ

ω
++γ+γ

ω
=+     (40) 

From (35) and (40) it results 11x β= ; 22x β= ; ( )21 ,Q ββ   

 ( ) 0E
2
1x1 >δ−= ; ( ) 0E

2
1x 2 >δ+= , where 2EEk4

−
ω

=δ       (41) 
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Generally, 
4

5t π
+ω=θ ; we will find t0(P0) and ( )00 Pθ , then t1(Q) and ( )Q1θ : 

 ( )
4

9
4

5;
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k
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ω
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π

−

ω
+γ

ω
+γ

+π

π
≤

ω
+γ

ω
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≤
π

ω
+γ

ω
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+π

=θ    (42) 

 ( )

ω
+β

ω
+β

+π=θ
k

k

tana2Q
1

2

1               (42’) 

 ( ) ( )[ ]001
1
0

1
1

*
1 PQ1ttt θ−θ

ω
=−=              (43) 

which is the P0Q arc travel time. 
With ( )21 ,Q ββ  determined, we pass on arc QO (on the circle 

10
C ) respecting the 

determinations (35) – (38) and replacing ( )21 ,αα  with ( )21 ,ββ  in the second stage. 
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The final minimal time for the trajectories (35) and (39) is 
 *

2
*
1

* ttt +=                   (45) 
and ( ) 0OH* ≡ , ( ) ( ) 0c,cH,U,X,tH 21

****
2

* ≡=λ  is used after (38). 
Numerical and graphic applications were developed for the two above mentioned 

situations. 
Remark:   
If the speeds system is amortized - resistance terms (elastic damped oscillator) appear 

- trajectories are spiral arcs. The study of this case is analogous to those presented in the 
paper. 
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