USING THE ANALOGY IN TEACHING TETRAHEDRON GEOMETRY

Adriana-Daniela GURGUI
"Ovidius"High School, Constanta, Romania (adrianagurgui@yahoo.com)

DOI: 10.19062/2247-3173.2016.18.1.61

Abstract

In the teaching tetrahedron geometry, we often meet similar properties to those of the triangle and that is why it is good to emphasize and use this analogy. The result will develop in students not only the functional thinking, but also the analog thinking.

Keywords: comparative studies, elementaryproblems in Euclidian geometries.
MSC2010: 97D10, 51M04

1. INTRODUCTION

While the triangle is determined by three non-collinear points, the tetrahedron is defined by four non-coplanar points. In the following we will make a brief, but very useful parallel between the two geometric notions.

2. PARALLEL BETWEEN TRINGLE AND TETRAHEDRON

We will follow Table 1, where we will find the properties of the triangle and tetrahedron:

Table 1.

No.	TRIANGLE	TETRAHEDRON
1.	Area $=\frac{B \cdot h}{2}$	Volume $=\frac{A_{b} \cdot h}{3}$

5.	In an equilateral triangle the three medians have equal lengths.	In a tetrahedron with equiareal faces the four medians have equal lengths.
6.	In an equilateral triangle the three altitudes have equal lengths.	In a tetrahedron with equiareal faces the four altitudes have equal lengths.
7.	Triangle angle bisector theorem: A bisector of an angle of a triangle divides the opposite side in two segments that are proportional to the other two sides of the triangle.	Dihedral angle bisector theorem in tetrahedron: A bisector half-plane of an dihedral angle in tetrahedron divides the opposite edge in two segments that are proportional to the other two surfaces of the dihedral angle.
8.	Cathetus theorem in the right triangle $A B C$ with $m(\angle A)=90^{\circ}$ and $A D \perp B C: A B^{2}=B C \cdot B D$ and similars.	An analogue of the Cathetustheorem in the tetrahedron $V A B C$, with $V A \perp V B \perp V C \perp V A$ and $A H \perp(A B C)$: $A_{\triangle V A B}^{2}=A_{\triangle A B C} \cdot A_{\triangle H A B} \text { andsimilars. }$
9.	The right triangle altitude theorem in the right triangle $A B C$ with $m(\angle A)=90^{\circ}$ and $A D \perp B C: A D^{2}=D C \cdot D B$ and similars.	An analogue of the right triangle altitude theorem in the tetrahedron $V A B C$, with $V A \perp V B \perp V C \perp V A$ and $A H \perp(A B C):$ $A_{\Delta V C D}^{2}=A_{\triangle C A D} \cdot A_{\triangle H B C}=A_{\triangle C B D} \cdot A_{\triangle H A C} \text { andsimil }$ ars.
10.	Pithagorean theorem in the right triangle $A B C$ with $m(\angle A)=90^{\circ}$: $B C^{2}=A B^{2}+A C^{2}$	An analog of the Pithagorean theorem in an tetrahedron $V A B C$, with $V A \perp V B \perp V C \perp V A$ and $A H \perp(A B C)$: $A_{\triangle A B C}^{2}=A_{\triangle V A B}^{2}+A_{\Delta V B C}^{2}+A_{\triangle V C A}^{2}$

In the following there will be proved some of the theorems presented in the previous table. The numbering will be kept and it will only refer to the theorems of the tetrahedron.

Now we will prove 7. from the Table 1. (A bisector half-plane of an dihedral angle in tetrahedron divides the opposite edge in two segments that are proportional to the other two surfaces of the dihedral angle).(FIG. 1.)

FIG. 1.

Let be E the point where the bisector half-plane intersects the opposite edge of the tetrahedron and $E L \perp(B C D), E H \perp(A B C)$. Because $(B C E)$ is the bisector-half plane, the distances to the faces of the dihedral angle are the same, therefore $E L=E H$.

$$
V_{D B C E}=\frac{S_{B C D} \cdot E L}{3}, V_{A B C E}=\frac{S_{A B C} \cdot E H}{3}
$$

$$
\begin{equation*}
\frac{V_{D B C E}}{V_{A B C E}}=\frac{\frac{S_{B C D} \cdot E L}{3}}{\frac{S_{A B C} \cdot E H}{3}}=\frac{S_{B C D}}{S_{A B C}} \cdot \frac{E L}{E H}=\frac{S_{B C D}}{S_{A B C}} \tag{1}
\end{equation*}
$$

Let $D I \perp(B C E), A K \perp(B C E)$. Therefore $D I \| A K$. We will prove that I, E, K are collinear. Let $\beta=(D I, A K)$ From $E \in A D \subset \beta$ and $E \in(B C E) \Rightarrow E \in \beta \cap(B C E)$.

But $I, K \in \beta \cap(B C E)$ and then $I, E, K \in \beta \cap(B C E)$, so they are collinear.
Volumes of the two tetrahedrons can also be expressed by:
$V_{D B C E}=\frac{S_{C B E} \cdot D I}{3}, V_{A B C E}=\frac{S_{C B E} \cdot A K}{3}, \quad \frac{V_{D B C E}}{V_{A B C E}}=\frac{\frac{S_{C B E} \cdot D I}{3}}{\frac{S_{C B E} \cdot A K}{3}}=\frac{D I}{A K}$
From $D I \| A K \Rightarrow \triangle D I E \approx \triangle A K E \Rightarrow \frac{D I}{A K}=\frac{I E}{K E}=\frac{D E}{A E}$
And from (1),(2)si (3) $\Rightarrow \frac{S_{B C D}}{S_{A B C}}=\frac{D E}{A E}$.
Now we will prove that in tetrahedron $V A B C$ with $V A \perp V B \perp V C \perp V A$ the orthogonal projection of point V on the plane $(A B C), H$, is the orthocenter of the triangle $A B C$ and the validity of the statements 8.9.10. from the Table 1:(FIG. 2.)

$$
\begin{align*}
& A_{\Delta V A B}^{2}=A_{\triangle H A B} \cdot A_{\triangle A B C}(\text { for } 8 .) \tag{4}\\
& A_{\Delta V C D}^{2}=A_{\Delta C A D} \cdot A_{\triangle H B C}(\text { for } 9 .) \tag{5}\\
& A_{\triangle A B C}^{2}=A_{\Delta V A B}^{2}+A_{\Delta V B C}^{2}+A_{\Delta V C A}^{2}(\text { for } 10 .) \tag{6}
\end{align*}
$$

FIG. 2.

Let $V H \perp(A B C)$. We will prove H is the orthocenter of the triangle $A B C$. First we will prove that $C H \perp A B$. From $V C \perp V B$ and $V C \perp V A \Rightarrow V C \perp(V A B) \supset A B \Rightarrow V C \perp A B$.

From $V H \perp(A B C) \supset A B \Rightarrow V H \perp A B$
From $V C \perp A B$ and $V H \perp A B \Rightarrow A B \perp(V C H) \supset C H \Rightarrow A B \perp C H$

APPLIED MATHEMATICS, COMPUTER SCIENCE, IT\&C

Similarity it can demonstrated that $B H \perp A C$ and then H is the orthocenter of the triangle $A B C$.

Now we will prove that the validity of the statement 8 . fromthe Table 1.
From $A_{\triangle V A B}^{2}=\left(\frac{A B \cdot V D}{2}\right)^{2} A_{\triangle H A B}=\frac{A B \cdot H D}{2}, A_{\triangle A B C}=\frac{A B \cdot C D}{2}$
Using Cathetus Theorem in $\triangle V C D: V D^{2}=H D \cdot C D$ we have:
$A_{\triangle V A B}^{2}=A_{\triangle H A B} \cdot A_{\triangle A B C} \Leftrightarrow\left(\frac{A B \cdot V D}{2}\right)^{2}=\frac{A B \cdot H D}{2} \cdot \frac{A B \cdot C D}{2} \Leftrightarrow$
$\Leftrightarrow \frac{A B^{2} \cdot V D^{2}}{4}=\frac{A B^{2} \cdot(H D \cdot C D)}{4}$

It will prove the validity of statement 9 . From the Table 1:
From (4) Cathetus Theorem in the right triangle $\triangle V C D: C V^{2}=C D \cdot C H$ and $V D^{2}=A D \cdot B D($ The right triangle altitude theorem in the right triangle $\Delta V A B)$

$$
\begin{aligned}
& A_{\triangle V C D}^{2}=A_{\triangle C A D} \cdot A_{\triangle H B C} \Leftrightarrow\left(\frac{C V \cdot V D}{2}\right)^{2}=\frac{C D \cdot A D}{2} \cdot \frac{C H \cdot B D}{2} \Leftrightarrow \\
& \Leftrightarrow\left(\frac{C V \cdot V D}{2}\right)^{2}=\frac{(C D \cdot C H) \cdot(A D \cdot B D)}{2} \Leftrightarrow\left(\frac{C V \cdot V D}{2}\right)^{2}=\frac{C V^{2} \cdot V D^{2}}{4}
\end{aligned}
$$

Finally it will prove the validity of statement 10 . from the Table 1 :

```
From \(A_{\triangle V A B}^{2}=A_{\Delta H A B} \cdot A_{\triangle A B C}, A_{\Delta V B C}^{2}=A_{\Delta H B C} \cdot A_{\triangle A B C}, A_{\Delta V A C}^{2}=A_{\triangle H A B} \cdot A_{\Delta A B C}\)
Then \(A_{\triangle V A B}^{2}+A_{\Delta V B C}^{2}+A_{\Delta V C A}^{2}=A_{\triangle H A B} \cdot A_{\triangle A B C}+A_{\triangle H B C} \cdot A_{\triangle A B C}+A_{\triangle H A C} \cdot A_{\triangle A B C}=\)
\(A_{\triangle A B C} \cdot\left(A_{\triangle H A B}+A_{\triangle H B C}+A_{\triangle H A C}\right)=A_{\triangle A B C}^{2}\).
```


CONCLUSIONS

The few analogies studied in this work open the way to the comparative study between plane geometry concepts and the concepts of the space geometry. Therefore, the knowledge of the plane geometry is not just an adjunct to the geometry of space, but also a rich source of inspiration and analogies.

REFERENCES

[1] ***GeoGebra 5. Available at http:/.geogebra.en.softonic.com/mac, accessed on March 23, 2016;
[2] D. Branzei, M. Miculita, Tetrahedron triangle analogies, Paralela 45, Pitesti 2000;
[3] L. Nicolescu, V. Boskoff, Applied Geometry ProblemsEdituraTehnica, Bucuresti 1990;
[3] H. V. Stoiculescu, I.M. Popa, I. Popa Geometry and Trigonometry fotXth Grad, Didactic and Pedagogic Publishing, Bucuresti, 1990

