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Abstract: The polymer composites with conductive properties are a subject of great interest due to their 
remarkable characteristics. Depending on their formulation, different morphologies can be achieved, 
yielding in composites with superior conductivity ranging from electrostatic dissipative to highly 
conductive. Conductive fillers able to give highly ordered distributions lead to composites with 
segregated morphology where the critical volume fraction of filler is ultralow, while the electrical 
resistivity reaches values of 10-4 ·cm. This articles aims to highlight a few advantages of segregated 
conductive composites versus random conductive composites, based on the value of their corresponding 
percolation threshold. Factors that can influence the critical volume fraction of filler and its distribution 
in the matrix, such as nature of filler and matrix, processing approach and specific parameters, etc., are 
also reviewed, as well as the range of applications.  
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1. INTRODUCTION 
 

Conductive polymer composites are a 
relatively new class of materials with highly 
interesting properties which recommend them 
for various applications. They have been the 
subject of both theoretical and experimental 
studies over the last decades due to their 
versatility, especially the possibility to tune 
some characteristics (electric conductivity) 
according to specific requirements by only 
adjusting the amount of the conductive filler 
and its distribution. Conductive carbon-based 
fillers (as carbon black, carbon nanotubes or 
nanowires, graphene, graphene oxide, etc.) are 
preferable because, unlike metal fillers, they 
do not get oxidized and subsequently covered 

with an insulating layer on the particles 
surface [1,2].  

The major advantage of the conductive 
composites is that electrical properties are 
close to the fillers, while their mechanical 
characteristics and processing are typical for 
plastics. These composites have several other 
advantages over the conventional conductive 
materials, including processability, flexibility, 
light weight, ability to absorb mechanical 
shocks, low production costs. They can be 
used as antistatic materials and in applications 
such as switching devices, medical equipment, 
cables, transducers and gas sensors, as well as 
devices for electromagnetic radiation shielding 
and electrostatic discharge [1-7], as 
summarized in Fig. 1. 

 



 
Figure 1. Classification and applications  

of conductive polymeric composites 
 
As conductive composites can consist of 

randomly distributed conductive fillers 
(powders, nanoparticles, -wires, -sheets, -
tubes, etc.) within the matrix, which can be a 
polymer or a polymer blend, either conductive 
or not, they hold a great deal of interest from a 
fundamental point of view when the filler 
content is ultralow and they can be considered 
as typical segregated systems. The specific 
thermal and electric properties are determined 
by the morphology and properties of the 
conductive phase and are the result of different 
factors acting synergistically during their 
processing. The influence of the matrix type 
and nature of filler on the electrical 
characteristics of the composite has been 
studied in many works [8-12].  

The aim of this article is to highlight a few 
advantages of segregated conductive 
composites versus random conductive 
composites, based on the value of their 
corresponding percolation threshold. Factors 
that can influence the critical volume fraction 
of filler and its distribution in the matrix are 
also reviewed, as well as some applications. 
 

2. NANOCOMPOSITES WITH 
ULTRALOW PERCOLATION 

THRESHOLD   
 

2.1 The percolation threshold and the 
critical volume fraction of the filler. It is 
known that most of the common industrial 
polymers are basically insulating from 
electrical point of view. Therefore, they can be 
transformed into conductive media only by 
incorporating a conductive phase, conductive 
fillers, respectively. Basically, the electric 
conductivity of a segregated system can be 
empirically described using the equation 1,  

 

where  and 0 are conductivity values,  and 
c are the filler volume fractions and t is a 
critical exponent (for 2D networks, t=1.3; for 
3D networks, t=2). When the volume filler 
fraction  reaches a critical value c (also 
called the percolation threshold), an infinite 
conductive cluster (IC) is formed and the 
composite becomes conductive [13]. In 
general, c depends on several factors, such as 
the shape of filler particles, the interaction 
between filler and host polymer and the spatial 
filler distribution. The more the shape of 
particles diverges from the spherical one; the 
lower is the percolation threshold. The 
interaction between the polymer matrix and 
filler influence on c through the capability of 
the polymer melt to wet the filler particles: the 
stronger this interaction, the better the 
wettability, the higher c. As for the spatial 
distribution of the filler, it depends on the 
polymer-filler interaction, as well as on 
viscosity of polymer melt and the processing 
method: the polymer with the higher shear 
viscosity will generate the larger shear stress 
and enables a different particle size 
distribution [11].  

A relationship between these factors was 
defined (equation 2),  

 
where F is the packing factor (a structural 
parameter that depends on the filler particles 
size and shape) and m is the maximum value 
of conductivity. 

The conductive properties of composites 
thus obtained can be modulated by controlling 
the filler spatial distribution and, consequently, 
the percolation threshold which is a measure 
of the critical volume fraction of filler c. At 
this specific point, a jump in conductivity can 
be recorded. Further addition of filler will 
yield in a gradually increase in conductivity, 
due to the formation of supplementary 
conductive pathways, up to a saturation that 
results in a plateau where the conductivity 
reaches the maximum value, m.   

The mechanism for the formation of a 
segregated conductive network relies on the 
capability of the polymeric matrix to provide 
exclusion micro-domains where the 
conductive filler particles are allowed a 
constrained volume, such as the interface 
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between immiscible polymers in a blend. This 
conditionality substantially increases the 
density of the ordered conductive pathways at 
ultralow filler volume fraction.  

Conductive composites based on polymer 
blends bring out more interest because they 
combine the properties of all components. 
Thus, the co-continuous phase of polymer 
blends can simultaneously give the maximum 
contribution of the mechanical modulus of 
each component [14]. An illustrative example 
is the case of polyamide/polypropylene 
(PA/PP) blends successfully used as matrix for 
conductive composites due to the mechanical 
properties of PA and enhanced processability 
of PP. At the same time, heterogeneous 
polymeric systems made of immiscible 
components (such as PA/PP) have overall 
reduced mechanical characteristics due to their 
low adhesion at the interface. This is one 
fundamental factor which leads to segregated 
composites as the filler preferentially occupies 
certain areas, thus creating a highly ordered 
morphology with the minimum amount 
required. This phenomenon is driven by the 
following factors: thermodynamic (surface 
tensions between each polymer and filler, and 
between polymers), kinetic (the viscosity of 
the polymeric components at the processing 
temperature), processing (the method and 
parameters can influence on the 
thermodynamic and kinetic factors) and 
chemical (chemical interactions of the filler 
with one constituent of the blend) [15,16]. 
Studies performed on different polymeric 
blends (PP/PA, PP/PE, EVA/PE, 
HIPS/LLDPE, PET/PE, PE/POM) and fillers 
[17-27] revealed that the filler can be localized 
in one of the two polymer phases and/or at the 
interface bridging the phases, as schematically 
represented in Fig. 2. 

 

 
Figure 2. Spatial distribution of the filler in:  
a – random and b – segregated composites 

 
This is an important issue in terms of load 

transfer through the matrix and it also yields in 
increased values for some specific properties, 
such as the complex viscosity, storage 
modulus and loss modulus of the blends. 

2.2 Processing strategies. As for the 
processing, the conventional methods 
employed to obtain conductive composites are 
solution processing, melt mixing and in situ 
polymerization [28,29]. The melt mixing 
approaches (the twin-screw extrusion, internal 
mixing and injection molding) are the 
preferred ones since they are compatible with 
the industrial technologies for polymers and 
proved their effectiveness in terms of filler 
dispersion even considering the primary and 
secondary agglomeration of particles. Such 
composites generally have a percolation 
threshold close to the theoretic value 
calculated by the classical percolation theory 
[30,31]. Even nanometric fillers, such as 
carbon nanotubes or graphene nanosheets with 
high aspect ratio and able to favour highly 
ordered dispersions, can undergo abnormal 
aggregation (secondary agglomeration) that 
results in high value percolation thresholds 
(10–20 vol%). In the end, these conductive 
composites have some disadvantages, such as 
high melt viscosity, low economic 
affordability and poor mechanical properties 
(mainly ductility and toughness) [32,33].  

Another approach to obtain segregated 
conductive composites with ultralow 
percolation threshold is based on compressing 
a mixture of polymer granules decorated with 



conductive fillers via dry or solution mixing 
[34]. Despite its advantages (process 
simpleness, great variety of fillers, relatively 
good dispersion), only polymers with high 
melt viscosity can be used for this method in 
order to preserve the segregated morphology 
and the low critical volume fraction of the 
filler. 

The latex technology can also be 
considered when such composites are 
envisaged [34]. It comprises a polymeric 
emulsion where the filler particles are allowed 
only in the constrained volume of the 
interstitial space surrounding the latex 
particles during the freeze-drying processing. 
The method provides a good dispersion of the 
filler, availability to almost any polymer–filler 
system, low production costs and an 
environmentally friendly processing when 
water is used as solvent. The main drawback 
of this approach is the complex manufacturing.  

2.3 Factors that influence the ultralow 
percolation behavior. The challenges of 
tailoring the morphology of the segregated 
conductive composites resulted in specific 
methods to obtain ultralow critical volume 
fraction of the filler. The type and nature of the 
matrix, type and nature of filler, as well as 
processing method and parameters (kinetic and 
thermodynamic factors) can influence the 
percolation threshold. 

a. The polymer matrix. The polymeric 
matrices influence the percolation behavior by 
the molecular weight and modulus. It was 
proven that polymers with high molecular 
weights and moduli better preserve the 
segregated morphology. When single 
polymers are employed, the preferred matrices 
are usually thermoplastic high melt viscosity 
polymers (such as UHMWPE [35-37], PS 
[38,39], natural rubber [40], PA66 [41], etc.), 
because they can keep the conductive 
pathways localized in the interfacial regions 
during processing. The high modulus polymers 
compel filler particles into the interstitial 
space, facilitating the segregated network; 
thus, using a copolymer based on methyl 
methacrylate (MMA), n-butyl acrylate (BA), 
methacrylic acid (MAA) and poly(vinyl 

alcohol) with a high modulus (640׽ MPa), 

segregated conductive composites with 
ultralow percolation threshold (1.5 vol%) were 
obtained [42]. 

On the other hand, if the glass transition 
temperature (Tg) of the polymer matrix is 
lower than the processing temperature, the 
polymer modulus is too low and cannot 
promote the formation of the segregated 
conductive structure [43]. In such cases, the 
filler is easily mixed with the soft polymer 
particles, leading to a random conductive 
network. Therefore, polymers with high 
modulus and Tg values are suitable matrices 
when emulsion methods are employed.  

The polymer particle size also affects the 
segregated conductive composites formation 
by influencing the density of conductive 
pathways and the selective location of the 
conductive filler: the c value decreases along 
with the increasing particle size ratio polymer: 
filler [44]. 

The influence of the thermodynamic factor 
on the formation of segregated morphology is 
defined by the polymer surface tension. The 
high polymer surface tension leads to low 
polymer-filler interfacial tension and strong 
affinity between the conductive filler and 
matrix. Therefore, an insulating polymer layer 
can occur, that decreases the composite 
conductivity. For composites obtained by melt 
compounding, the high polymer-filler 
interfacial tension thermodynamically favors 
the aggregation of the conductive particles in 
the polymer melt, facilitating the formation of 
the segregated conductive structure [34]. 
Furthermore, a higher conductivity can be 
achieved using a semi-crystalline polymer 
matrix instead an amorphous one, because the 
conductive particles are expelled from the 
crystalline segments during crystallization; 
consequently, the amorphous phase 
accumulates most of the filler [45]. 

On the other hand, conductive composites 
with ultralow percolation threshold can be 
obtained using polymer blends as matrices. 
Thus, HIPS/UHMWPE [46], PC/ABS/ABS-g-
MA [47], PE/PET [48], PE/PS [49], 
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PP/PS/ABS [50], UHMWPE/PMMA [51], 
PP/PA, PP/PE, EVA/PE, HIPS/LLDPE, 
PET/PE, PE/POM [17-27] are examples 
successfully illustrating the wide variety of 
available convenient combinations. A 
particular case deserves a special mention, 
namely the use of thermoplastic co-
polyamides in the polymer blends used as 
matrix for conductive composites with 
ultralow percolation threshold. Studies [52-54] 
revealed the ternary co-polyamide coPA 
(PA6/PA66/ PA610) used in composite 
formulations with PP and CNTs, obtained by 
melt mixing, favored the formation of the 
segregated morphology in the corresponding 
conductive composites and enabled an 
ultralow percolation threshold (0.8-1.48 vol%) 
[52]. 

b. Effect of the conductive fillers. The 
nature of the conductive fillers has a decisive 
role in the electrical properties of conductive 
composites with ultralow percolation 
threshold. Considering a uniform dispersion of 
the conductive filler particles at the interface 
of the polymeric domains, the c values 
decrease along with the increasing aspect ratio 
of the filler, in concordance with the theory of 
the excluded volume [55]. On the other hand, 
it is known the high aspect ratio fillers have 
superior transport properties and effectiveness 
in forming segregated conductive 
morphologies. Thus, depending on the nature 
of the filler and the corresponding segregated 
morphology, different percolation thresholds 
can be reached for the same matrix: in the case 
of UHMWPE-based composites, it can vary 
from 0.003 vol% (graphene nanosheets as 
filler; method: solution mixing) to 0.5 vol% 
(fillers: carbon black and MWCNTs; method: 
dry mixing) [34]. 

Most of the conductive fillers are to be 
found at the interface of polymer domains, 

which requires a highly uniform dispersion, 
difficult to reach especially at relatively high 
loadings. This is a typical situation for 
MWNTs-based conductive composites, where 
secondary agglomeration is a common 
drawback [56,57]. Therefore, the high aspect 
ratio conductive nanofillers are not to be used 
for conductive composites with segregated 
structures without employing highly efficient 
dispersion methods. 

Different segregated morphologies can be 
found in conductive composites due to 
disparities in the microstructure of the filler, be 
it nano-bundles, -sheets or -wires. Commonly, 
the nanosheets are frequently restacking 
forming a “plane-to-plane” conductive 
network which can be considered a 2D 
structure. Therefore, fillers like graphene 
nanosheets are less susceptible to generate 
highly branched networks as compared to 
CNTs [58], and the percolation threshold 
moves from ultralow to low values. 

Besides the geometry, the chemistry of the 
conductive fillers surface also affects the 
properties of the segregated conductive 
composites through the corresponding changes 
in the inherent electrical conductivity [59].   

c. Processing method and parameters. 
The processing approach and process 
parameters can dramatically influence the 
morphology of the segregated composites, 
with direct effect on their percolation 
behavior. The main approaches are already 
presented herein. While solution and dry 
mixing methods are costly and complex, and 
the results reported are sometimes arguable in 
terms of dispersion effectiveness and 
percolation threshold value, the melt mixing 
and latex approaches seem more appropriate, 
given that their characteristics favor the 
diffusive rearrangement of the conductive 
filler in the polymeric matrices (dynamic 



percolation, formation of additional 
conductive channels and improving their 
electrical performance). The latex approach 
leads to composites with relatively high c 
(0.6 vol% [43,46], 0.9 vol% [41]) due to the 
difficulties to stabilize the filler particles in the 
constrained volume between matrix particles, 
as the molecular weight and modulus of the 
latex polymer is relatively low [60].  

Considering the maximum conductivity m 
[S/cm] as analysis criterion, it can be noticed 
that its values depends on the same factors. 
Thus, the CNTs-containing composites 
showed higher conductivity than those 
containing graphene nanosheets due to the 
better transport properties of CNTs [38,40,60].  

During latex processing in the presence of 
surfactants such as sodium-dodecyl sulfate 
(SDS), insulating gaps may occur inside the 
composite, creating high resistivity point along 
with segregated conductive channels [61]. 
When melt mixing is considered, the 
segregated morphology of the conductive filler 
prevents the diffusion of the macromolecular 
chains, obstructing the melting at high 
loadings [62]. Therefore, the filler amount 
cannot exceed 10% when these composites are 
prepared through dry compounding and melt 
blending, but can vary between 0 and 100 wt% 
if they are obtained by the latex technology, 
without any limitation due to the melt 
viscosity [34]. 

The high temperature processing lowers 
the melt viscosity of the host polymers 
yielding in significant mixing between the 
matrix and conductive filler, and thus prevents 
the formation of the segregated morphology.  

The high pressure treatment can increase 
the packing factor F, up to a certain value, 
generating tightly packed networks [34]. 
Beyond this value, the network breaks into 
separate conductive segments.  

The mechanical mixing is strongly related 
to the wettability of the filler particles by the 
polymer and this is affecting their coating and 
the composites percolation behavior, 
respectively. In addition, pre-mixing insulating 
polymers can generate static electricity that 
facilitates the absorption of the conductive 
fillers on the surfaces of the polymer granules 
[34]. Still, excessive mixing creates additional 
stress and reduces the conductive network, 

similar to high pressure. A critical mixing time 
must be established in order to optimize the 
processing/performance ratio.  

The melt blending method is highly 
recommended when two incompatible 
polymers are used as matrix because 
segregated conductive structures with tuned 
properties are difficult to obtain by other 
approaches. There are two methods to obtain 
the segregated conductive composites by melt 
blending. One implies adjusting the 
thermodynamic parameter (interfacial tension) 
through the kinetics features (melt viscosity 
and compounding); thus, the conductive filler 
is initially dispersed into the polymer 
thermodynamically unfavorable (the polymer 
with the lower melt viscosity) and, 
subsequently, the master-batch is melt blended 
(“diluted”) with the other polymer (the more 
favorable polymer having the higher melt 
viscosity). The thermodynamic driving forces 
favor the distribution of the conductive filler 
into the favorable polymer and at the interface 
[16,52]. The other method consists of the 
introduction of a third polymer with high 
affinity for the conductive filler, acting as 
compatibilizer for a selected pair of 
incompatible polymers. The percolated filler-
compatibilizer phase will be selectively placed 
in the interfacial region of the polymer blend 
[34]. 

A successful example of optimization of all 
these factors acting synergistically is the 
system poly(3,4-ethylenedioxy-thiophene): 
poly(styrene-sulfonate)(PEDOT:PSS), used as 
the conducting surfactant for the dispersion of 
CNTs instead of the usual insulating stabilizers 
[34]; thus, m reached values comparable to 
pristine CNTs.  

2.4 Applications. The electrical properties 
of the conductive composites with ultralow 
percolation threshold are directly connected 
with their sensing characteristics, given their 
capability to alter the conductive network 
under the action of some external stimuli, such 
as temperature, mechanical stress, and 
chemical environment. Therefore, these hi-
tech materials are used for sensors and 
actuators, as well as in electronics as thermo-
electric or EMI shielding materials. 

The positive (PTC) and negative (NTC) 
temperature coefficients of these materials 
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depend on their resistivity around the melting 
point of the matrix polymer. Due to their 
strong interrelation, they are used for 
extremely high temperature protection devices, 
self-regulating heaters, micro-switch sensors, 
etc. [63,64]. 

The electrical response of the conductive 
composites toward mechanical stress (the 
piezo-resistive effect) occurs when the 
distance between the conductive particles 
changes to exceed the tunneling distance under 
the applied load [34]. Despite their interesting 
strain-resistivity behavior, the use of these 
bulky sensors is limited by necessity of 
reaching the high loadings of conductive filler 
in order to enable pathways for an effective 
charge transport [65]. 

The use of conductive polymer composites 
as materials for chemicals detection relies on 
their ability to swell when exposed to organic 
compounds, when vapors or liquids diffuse 
into the polymer matrix, yielding in increased 
distances between the conductive particles. 
This swelling process is often too slow causing 
a low response rate. Conductive composites 
with segregated morphologies are ideal for 
such applications because the conductive 
phase is located at the interfacial regions and 
allows the accelerate permeation of chemicals 
through the capillary effect [66,67].  

The conductive polymer composites have 
been widely used for EMI shielding 
applications, but the high filler loadings 
required for adequate shielding properties (≥ 
20 dB) negatively affect the production costs 
and mechanical characteristics due to their 
secondary aggregation [68,69]. 

 
3. CONCLUSIONS  

AND FUTURE DEVELOPMENT 
 

The conductive thermoplastic polymer 
composites having segregated morphology 
have an efficient charge transport at very low 
content of filler, which entails unique 
advantages: the ultralow percolation threshold, 
high value maximum conductivity, sensing 
abilities, thermo-electric properties etc. 

Comparing the percolation thresholds of 
conductive composites obtained by different 
methods, it can be concluded that segregated 
composites obtained by emulsion technique 
and melt blending have higher c values than 
those prepared via dry or solution mixing. The 
choice in terms of method and process 
parameters is made, ultimately, based on the 
nature and properties of the polymer or 
polymer blend and filler. Given that the lowest 

c (0.0054׽ vol%) was obtained in a system 

made of CB/ABS after introducing large 

polymeric beads (5׽ mm in diameter) as a 

scaffold for the segregated conductive 
morphology [34], one question remains: is low 
versus ultralow percolation threshold a 
competition toward segregated conductive 
composites with 0 vol% filler?  

Significant efforts have been made in order 
to develop these materials for various 
applications. Yet, there are still certain 
challenges that must be addressed (wise 
selection of polymers for the mixed matrices, 
improved dispersion of the filler, avoid the 
formation of micro-voids, optimization of the 
processing parameters as a function of specific 
pairs matrix-filler, use of hybrid fillers instead 
of classic CNTs which are highly expensive 



etc.) in order to make the transition from 
theory to application and enable the 
conductive thermoplastic polymer 
nanocomposites with ultralow percolation 
threshold multiple functionality. 
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