ABOUT A PAIR LINEAR POSITIVE OPERATORS ASSOCIATED WITH BLEIMANN-BUTZER-HAHN OPERATOR

Cristina Sanda CISMAŞIU

TRANSILVANIA University of Brasov, Romania

Abstract

We deal in this paper with an estimation of the difference between Bleimann-Butzer-Hahn operator and its associated operator defined according to a general method of construction of linear positive operator.

Mathematics Subject Classification (2010): 41A36, 41A35,.
Keywords: positive linear operators, Bleimann-Butzer-Hahn operator, estimation.

1. INTRODUCTION

In our paper [4] we defined and studied the approximation properties of a new linear positive operator associated with Bleimann-Butzer-Hahn operator obtained according to a general method of construction of linear positive operators.

Indeed, this method means to associate to the operator $P_{n}: \mathcal{L} \rightarrow \mathcal{F}(I)$ defined as

$$
\begin{equation*}
P_{n}(f ; x)=\sum_{k=0}^{n} h_{n, k}(x) f\left(x_{n, k}\right), f \in \mathcal{L} \tag{1.1}
\end{equation*}
$$

a linear positive operator of the form

$$
\begin{equation*}
L_{n}(f ; x)=\sum_{k=0}^{n} h_{n, k}(x) v_{n, k}(f), x \in I, \tag{1.2}
\end{equation*}
$$

$f \in \mathcal{L}$,
where $h_{n, k} \in C_{B}(I), h_{n, k} \geq 0$ so that $\sum_{k=0}^{n} h_{n, k}=1$, exists $x_{n, k} \in I$ the barycenter of a : $\mu_{n, k}$ probability Borel measures on I,

$$
\begin{aligned}
& n \geq 1, k=\overline{0, n} \quad \text { i.e. } \quad x_{n, k}=\int_{I} t d \mu_{n, k}(t) \text { and } \\
& v_{n, k}(f)=\int_{I} f(t) d \mu_{n, k}(t), f \in \mathcal{L} .
\end{aligned}
$$

We consider that, \mathcal{L} is the common set of real measurable bounded functions on I for which $P_{n} f, L_{n} f, v_{n, k}(f)$ are well defined and $\mathcal{F}(I)$ is the space of all real valued functions defined on I. As usual, $e_{i}(x)=x^{i}, i=0,1,2, x \in I$ denote the test monomial functions.

For the pair of linear positive operators $\left(P_{n}, L_{n}\right)$ it is true the next result [5]:

Theorem 1.1. If $\left(L_{n}\right)_{n \geq 1},\left(P_{n}\right)_{n \geq 1}$, are two sequences of linear positive operators defined as (1.1) respectively (1.2) for $f \in C^{2}{ }_{B}(I) \subset \mathcal{L}$, then for $x \in I$ we have the estimation

$$
\left|L_{n}(f ; x)-P_{n}(f ; x)\right| \leq \frac{\left\|f^{\prime \prime}\right\|}{2} \cdot \sum_{k \geq 0} h_{n, k}(x)\left[v_{n, k}\left(e_{2}\right)-\left(v_{n, k}\left(e_{1}\right)\right)^{2}\right] .
$$

Butzer-Hahn operator [1], [2], [3], [7], defined So, we consider that as $P_{n}: C_{B}[0, \infty) \rightarrow C_{B}[0, \infty)$ is the Bleimann-

$$
\begin{equation*}
P_{n}(f ; x)=(1+x)^{-n} \sum_{k=0}^{n}\binom{n}{k} x^{k} f\left(\frac{k}{n-k+1}\right), \quad f \in C_{B}[0,+\infty), \quad x \geq 0, \quad n \in N, \tag{1.3}
\end{equation*}
$$

and its associated linear positive operator according to the general method of
construction is the new linear positive operator $L_{n}: C_{B}[0, \infty) \rightarrow C_{B}[0, \infty)$ defined in [4] as

$$
\begin{equation*}
+\left(\frac{x}{1+x}\right)^{n} f(n), x \geq 0, f \in C_{B}[0,+\infty) \tag{1.4}
\end{equation*}
$$

with $B(a, b)=\int_{0}^{\infty} \frac{t^{a-1}}{(1+t)^{a+b}} d t, a>0, b>0$ the Inverse-Beta function.

2. AN ESTIMATION ON THE

DIFFERENCE $\left|L_{n} f-P_{n} f\right|$

Using the theorem 1.1 we give an

$$
\begin{aligned}
& \frac{\left\|f^{\prime \prime}\right\|}{2} \sum_{k=1}^{n-1}\binom{n+1}{k} k \frac{x^{k}}{(1+x)^{n}}\left[\frac{1}{n-k}-\frac{1}{n-k+1}\right]= \\
& =\frac{\left\|f^{\prime \prime}\right\|}{2} \sum_{k=1}^{n-1}\binom{n+1}{k-1} \frac{x^{k}}{(1+x)^{n}}\left[\frac{2}{n-k}-\frac{1}{n-k+1}\right]= \\
& =\frac{\left\|f^{\prime \prime}\right\|}{2} \sum_{j=0}^{n-2}\binom{n+1}{j} \frac{x^{j+1}}{(1+x)^{n}}\left[\frac{2}{n-j-1}-\frac{1}{n-j}\right]= \\
& =\frac{\left\|f^{\prime \prime}\right\|}{2}\left[R-\sum_{j=0}^{n-2}\binom{n+1}{j} \frac{1}{n-j} \cdot \frac{x^{j+1}}{(1+x)^{n}}\right]
\end{aligned}
$$ estimation of the difference $\left|L_{n} f-P_{n} f\right|$. So,

with

$$
\begin{align*}
& \left|L_{n}(f ; x)-P_{n}(f ; x)\right| \leq \frac{\left\|f^{\prime \prime}\right\|}{2} \sum_{k=1}^{n-1}\binom{n}{k} \frac{x^{k}}{(1+x)^{n}} \\
& \cdot\left[\int_{0}^{\infty} \frac{t^{2}}{B(k, n-k+2)} \cdot \frac{t^{k-1}}{(1+t)^{n+2}} d t-\left(\frac{k}{n-k+1}\right)^{2}\right] \tag{1.6}\\
& =\frac{\left\|f^{\prime}\right\|}{2} \sum_{k=1}^{n-1}\binom{n}{k} \frac{x^{k}}{(1+x)^{n}} \\
& {\left[\frac{B(k+2, n-k)}{B(k, n-k+2)}-\frac{k^{2}}{(n-k+1)^{2}}\right]=} \\
& =
\end{align*}
$$

$$
R=\sum_{j=0}^{n-2}\binom{n+1}{j} \frac{2}{n-j-1} \cdot \frac{x^{j+1}}{(1+x)^{n}} \leq \frac{8 x(1+x)^{2}}{n+2}
$$

$$
(\text { see }[4])
$$

Since,

$$
\frac{1}{n-j} \leq \frac{2}{n-j+2}, 0 \leq j \leq n-2, n \geq 2
$$

we have for the second term of (1.5) that

$$
\sum_{j=0}^{n-2}\binom{n+1}{j} \frac{1}{n-j} \cdot \frac{x^{j+1}}{(1+x)^{n}} \leq 2 \sum_{j=0}^{n-2}\binom{n+1}{j}
$$

$$
\cdot \frac{1}{n-j+2} \cdot \frac{x^{j+1}}{(1+x)^{n}} \leq
$$

$$
\leq 2 x \sum_{j=0}^{n+1}\binom{n+1}{j} \frac{1}{n-j+2} \cdot \frac{x^{j}}{(1+x)^{n}}
$$

INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER
 AFASES 2013
 Brasov, 23-25 May 2013

$$
\begin{align*}
& \leq 2 x(1+x) \sum_{j=0}^{n+1}\binom{n+1}{j} \frac{1}{n-j+2} \cdot\left(\frac{x}{1+x}\right)^{j} . \\
& \cdot\left(1-\frac{x}{1+x}\right)^{n+1-j}=2 x(1+x) E\left[\frac{1}{n-U+2}\right] \tag{1.7}
\end{align*}
$$

Together with a result of Chao and Strawdermann [6, (3.4)] we have for the mean value of the random variable $\frac{1}{n+2-U}$ when $n+1-U$ has a Bernoulli distribution with parameters $n+1$ and $q=1-p=\frac{1}{1+x}$, that

$$
\begin{align*}
& E\left[\frac{1}{n+2-U}\right]=E\left[\frac{1}{1+(n+1-U)}\right]= \tag{1.8}\\
& =\frac{1-p^{n+2}}{(n+2) q}<\frac{1}{(n+2) q}=\frac{1+x}{n+2}
\end{align*}
$$

So, using (1.5) with (1.6), (1.7), (1.8) we obtain

$$
\begin{aligned}
& \left|L_{n}(f ; x)-P_{n}(f ; x)\right| \leq \frac{\left\|f^{\prime}\right\|}{2} \\
& {\left[\frac{8 x(1+x)^{2}}{n+2}-\frac{2 x(1+x)^{2}}{n+2}\right],} \\
& \left|L_{n}(f ; x)-P_{n}(f ; x)\right| \leq \frac{3 x(1+x)^{2}}{n+2}\left\|f^{\prime}\right\| .
\end{aligned}
$$

Theorem 2.1. For

$n \geq 2, x \in[0, \infty), f \in C^{2}{ }_{B}[0, \infty)$ we have to relative to the pair of the operators (1.3) and (1.4)

$$
\left|L_{n}(f ; x)-P_{n}(f ; x)\right|<\frac{3 x(1+x)^{2}}{n+2}\left\|f^{\prime \prime}\right\| .
$$

REFERENCES

[1] Adell, J. A., De la Cal, J., San Miguel, M., Inverse Beta and generalized BleimannButzer - Hahn operators, J. Approx. Theory, 76 (1994), 54- 64.
[2] Agratini, O., Approximation properties of a generalization of Bleimann, Butzer and Hahn operators, Mathematica Pannonica, 9(1998), 2,165-171.
[3] Bleimann, G., Butzer, P.L., Hahn L. A., Bernstein-type operator approximating continuous functions on the semi-axis, Indag. Math., 42 (1980), 255-262.
[4] Cismaşiu C. S., A new linear positive operator associated with Bleimann-ButzerHahn operator, (Bull. Transilvania Univ. Braşov, to appear).
[5] Cismaşiu C. S., The pairs of linear positive operators according to a general method of construction, Stud. Univ. BabeşBolyai Math., 57(2012), No. 4, 497-509.
[6] Chao, M. T., Strawdermann, W. E., Negative moments of positive random variables, J. Amer. Statist. Assoc., 67 (1972), 429-431.
[7] Ivan, M., A note on the Bleimann - Butzer - Hahn operator, Automat. Comput. Appl. Math., 6 (1997), 11-15.

