
 
 

 
  “HENRI COANDA”                                                                                                                                                                                                                                          “GENERAL M.R. STEFANIK” 

AIR FORCE ACADEMY                                                                                                                                                                                                                                       ARMED FORCES ACADEMY 
  ROMANIA                                                                                                                                                                                                                                                            SLOVAK REPUBLIC 

 

 

INTERNATIONAL CONFERENCE  of  SCIENTIFIC PAPER 
AFASES 2013 

Brasov, 23-25 May 2013 

 
ABOUT A PAIR LINEAR POSITIVE OPERATORS ASSOCIATED WITH 

BLEIMANN-BUTZER-HAHN OPERATOR 
 
                                                Cristina Sanda CISMAŞIU 
 

TRANSILVANIA University of Brasov, Romania 
 
 
Abstract. We deal in this paper with an estimation of the difference between Bleimann-Butzer-Hahn 
operator and  its associated operator defined according to a general method of construction of linear 
positive operator. 
 
Mathematics Subject Classification (2010): 41A36, 41A35,. 
 
Keywords: positive linear operators, Bleimann-Butzer-Hahn operator, estimation.  
 
 

1. INTRODUCTION 
 
      In our paper [4 ] we defined and 
studied the approximation properties of a new 
linear positive operator associated with 
Bleimann-Butzer-Hahn  operator obtained 
according to  a general method of construction 
of linear positive operators. 
      Indeed, this method means to associate 
to the operator LF( I )defined as  :nP
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We consider that, L is the common set 
of real measurable bounded functions on I for 
which   are well defined 

and F( I ) is the space of all real valued 
functions defined on I. As usual, 

fLn , 
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monomial functions. 
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For the pair of linear positive operators 
 nn LP ,  it is true the next result [5]: 
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two  sequences of linear positive operators    
defined   as (1.1) respectively (1.2)  for 
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 So, we consider that 

    ,0,0: BBn CCP is the Bleimann-

Butzer-Hahn operator [1], [2], [3], [7], defined 
as  
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and its associated linear positive operator 
according to the general method of 

construction is the new linear positive 
operator     ,0,0: BBn CCL  defined in  

[4 ] as  
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the Inverse-Beta function. 
 

2. AN ESTIMATION ON THE 
DIFFERENCE fPfL nn   

 
 
 Using the theorem 1.1 we give an 
estimation of the difference fPfL nn   . So,     
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(see [4 ] ).                                                 (1.6) 
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we have for the second term of (1.5) that 
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Together with a result of Chao and 
Strawdermann [6, (3.4)] we have for the mean 

value of the random variable 
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has a Bernoulli distribution with 
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So, using (1.5) with (1.6), (1.7), (1.8) we 
obtain 
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Theorem 2.1. For 

 we have to 

relative to the pair of the operators (1.3) and 
(1.4)  
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