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Abstract: This paper deals with analysis of the robust analysis of the UAV longitudinal motion stability 
augmentation system (SAS). In classical interpretation of the automatic flight control system’s theory the 
aircraft or the UAV is considered as the rigid-body one. The controller stabilizing automatically UAV 
spatial motion is designed for the nominal plant. In real flight conditions UAV behaves elastically. The 
most common mathematical representation of the aircraft fuselage bending motion is the transfer 
function method. Mathematical model of the elastic UAV motion can be considered as additive 
uncertainty. The purpose of the authors is to analyze if the given static controller able to stabilize the 
UAV spatial motion when its real dynamics is taken into account during controller gain selection. 
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1. INTRODUCTION 
 

This paper is lean upon early work of the 
author dealing with analysis of the robustness 
of the automatic control systems in general [1], 
and on paper representing application of this 
theory to analyze stability augmentation 
system of the UAV [2]. 

The true control systems are highly 
nonlinear with complicated dynamics. The 
controller of the closed loop systems is often 
designed using simplified mathematical model 
of the plant. Simplification means linearization 
of the nonlinear systems, pole zero 
cancellation etc. Elements of the control 
systems are often considered to be linear with 
simple mathematical models. 

Neglecting nonlinearities, simplification of 
the dynamics of actuators, motors, sensors and 
amplifiers leads to the so-called nominal 
systems. However, controller must work with 
the true system in real environment. 

Knowledge of the UAV elastic motion is 
important for designers from the point of view 
of derivation of the sensor location on the 
UAV. If elastic motion results in the error of 

rate sensing it is necessary to filter electric 
signals of the sensors. 

Many UAV, or aircraft flight control 
system is equipped with butterworth filters 
designed for filtering unwanted signals from 
the first and second overtones [4, 6, 7, 8]. The 
question is how to model the elastic motion of 
the UAV, or aircraft? One of the possible 
methods is the classical representation based 
upon the transfer function method. 

This paper deals with representation of the 
high frequency elastic motion dynamics of the 
UAV using transfer function method. 

Theoretical backgrounds, main methods of 
dealing with and equations of the aeroelasticity 
are given in [1, 4, 5, 6, 7, 11]. There are two 
methods available for modeling UAV, or 
aircraft elastic motion, i.e. classical and 
modern methods. 

This paper applies classical method based 
on transfer functions. In [5, 6, 7, 12, 13, 14, 
15, 16] there are given block diagrams of the 
automatic flight control systems, which are 
based upon stability augmentation systems. 

Flying qualities of the automatic flight 
control systems are defined in [7, 8, 10, 13]. 



Analysis of the control system robustness is 
presented in [9, 17]. 

References [12, 14, 17] give some 
examples of the robust dynamic controller and 
filter design for the aeroelastic fighter 
automatic flight control system using both 
LQG and LQG/LTR design methods. 

In [19] Palik deals with UAV flight 
management and flight safety aspects of the 
UAV flights. Palik and Vas dealt with UAV 
applications in aerodromes, and with its legal 
and airspace management aspects [20]. 

There are many UAVs owning non-
conventional fuselage and wing design. The 
Helios UAV is a solar-powered HALE1 UAV, 
propelled with electrical engines (see I.1.) 

 
I.1. Helios Solar HALE UAV (www.google.com) 

 
The Helios UAV does not have wing or 

fuselage in the classical meaning. 
The strategic reconnaissance UAV 

‘AeroVironment’ is the non-conventional 
UAV with large wingspan. The UAV fuselage 
is not a conventional one, i.e. it is very close to 
that of the long, thin rod (see I.2.a., I.2.b.) 

 
I.2.a. AeroVironment HALE UAV 

(www.google.com). 
 

                                                             
1 High Altitude Long Endurance 

 
I.2.b. AeroVironment HALE UAV 

(www.google.com). 
 

The scientific research of the UAV in India 
resulted in DRDO HALE UAV (see I.3.) 

 
I.3. Indian DRDO HALE UAV 

(www.google.com). 
 

Next example of the non-conventional 
design of the HALE UAV is the Zephyr 
HALE UAV. 

 
I.4. Zephyr HALE Solar UAV (www.google.com). 
 
It is easy to see that new aerodynamic design 
and new materials applied in manufacturing of 
the modern UAVs results in a highly 
aeroelastic aircraft. 
 

2. MATHEMATICAL MODEL OF THE 
ELASTIC UAV, AND ELASTIC 

AIRCRAFT 
 
During mathematical modeling of the elastic 

UAV the fuselage and the wings elastic 
motion can be analyzed. The UAV fuselage is 
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considered as a simple rod and its bending 
distorsion can be analized using Fig 1. 

The slender beam differential equation of 
the vertical displacement w of any fuselage 
segment when pure bending deflection of this 
element is considered is given by [2, 3, 4, 5]: 
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In eq (2.1) EI is bending stiffness, m(x) is 
running mass, the mass per unit of the fuselage 
distance, W(x,t) is the vertical displacement of 
the elements of the fuselage and finally, 

is the running external load. ),( txFy

 
Fig 1. UAV fuselage bending motion 

ν – angular deflection related to the fuselage 
unstrained position 

 
Displacement W(x,t) of any fuselage 

segment from its unstrained initial position can 
be derived as 
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where: )(xiϕ –ith normal mode shape function, 
–ith mode generalized coordinate. 

Substituting eq(2.2) into eq(2.1) and applying 
the property of the normal modes, which states 
that 
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leads to the following equation: 
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or, in the other manner: 
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(2.5) 
The distributed external load  at 

station  can be expressed as follows: 
),( txFy

Ex
)()(),( ExxtFtxF yy −= δ          (2.6) 

In the case when the external load  
is developed by the angular deflection of the 
elevator – mounted at station with coordinate 
of 

),( txFy

Ex  – the distributed load can be determined 
as: 

)()(),( EEE xxtKtxFy −= δδ ,        (2.7) 
where: )(tEδ  – angular deflection of elevator, 
and,  – elevator gain. Applying Lagrange 
technique for the determination of the fuselage 
bending motion we have [2, 3, 4, 5, 6, 12, 17]: 
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where  – generalized 

mass of the ith elastic mode, 

 – generalized force 

of the ith elastic degree of freedom. 
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Substituting eq. (2.7) into equation of 
defined above leads to: )(tFi

)()( )(  txKtF EEE xxii δϕ ==         (2.9) 



The fuselage bending motion equation (2.8) 
respecting eq. (2.9) can be rewritten in the 
following manner: 
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where: 
E

E
xxi

i
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M
KK == )( 1 ϕ  – constant gain. 

When the aeroelastic bending modes of the 
fuselage are taken into account to determine 
the output signal of the pitch rate sensor, in the 
complex frequency domain we have: 
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where: )(s
EZω –pitch rate of the elastic UAV. 

Secondly, taking the Laplace transform of 
eq. (2.10) with zero initial conditions we have: 
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22 sKsqss Eiiii δξ ωω =++ .      (2.12) 

It is easily can be seen that output signal of 
the pitch rate sensor can be determined as 
follows: 
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of the ith elastic degree of freedom. 
In [5, 6, 12, 17] parameters of the 1st and 

the 2nd overtones of the high maneuverability 
UAV/aircraft fuselage elastic bending motion 
are given as follows: 
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It is supposed that the longitudinal motion 
control system is affecting only the short 
period motion. The simplified mathematical 
model of the longitudinal motion of the rigid 
aircraft for the flight conditions H=1000 m and 
M=0.4 is given in [5, 6, 7, 12, 14, 15, 17] as 
follows: 
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In eq(2.15) let us consider the following 
parameters of the aircraft [5, 6, 12, 17]: 

5,0 ;  5 ;  2 ;  5,1 11 ==== −−
ααθ ξω ssTsA .(2.16) 

The resulting output signal of the pitch rate 
gyro can be determined as sum of the rigid and 
elastic aircraft output signals defined by eqs 
(2.13) and (2.15): 

)()()( sss
RZEZZ ωωω +=        (2.17) 

The aeroelastic aircraft model built by 
eqs (2.13), (2.15) and (2.17) is represented in 
Fig 2. 

 
Fig 2. The rigid UAV longitudinal motion model 

perturbed by elastic high frequency model 
dynamics. 

 
Sign ‘–‘ in rigid aircraft transfer 

function is for direction measuring between 
elevator deflection and the pitch rate. Elevator 
deflection is supposed to be positive if leads to 
negative pitch rate. If to neglect this sign in 
pitch rate damper the feedback must be 
positive. 

 
3. TIME DOMAIN ANALYSIS OF THE 

LONGITUDINAL STABILITY 
AUGMENTATION SYSTEM 

 
Let us consider the aircraft model defined 

by eqs(2.15)–(2.16). Eigenvalues and dynamic 
performances of the uncontrolled rigid aircraft 
are as follows [16, 18]: 

sradi /5,5,0,33,45,22,1 ==±−= ωξλ (3.1) 
Dynamic performances of the uncontrolled 

aircraft are different from the desired ones e.g 
in general case damping ratio must lie between 
0,6 and 0,8 [7, 8, 10, 13]. 

Assuming high natural frequency of the rate 
gyro it can be modeled as a simple 
proportional term with static gain of 5,1=sK . 
The compensator is supposed to be 
proportional term of 2=cK . 

During analysis of the pitch rate it is 
supposed that hydraulic actuator of the damper 
has fast response to input signals without any 
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time delay. Simplified block diagram of the 
longitudinal stability augmentation system of 
the aircraft when its elastic motion is taken 
into account can be seen in Fig 3. 

 
Fig 3. Longitudinal Motion Stability 

Augmentation System. 
 

The uncontrolled and the controlled aircraft 
was analized in the time domain. Results of 
the computer simulation can be seen in Fig 4. 
From Fig 4. it is easily can be seen that the 
uncontrolled aircraft transient response has 
large overshoot and large response time. 

The controlled rigid aircraft has faster 
response without overshoot. Dynamic 
performances of the closed loop system are as 
follows [2, 16, 18]: 
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1
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21

21
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.       (3.2) 

 
Fig 4. Aircraft pitch rate step responses. 

uncontrolled rigid aircraft  controlled rigid aircraft 

The closed loop perturbed control system 
was analized in the time domain. Results of 
the computer simulation can be seen in Fig 5. 

From Fig 5. it is easily can be seen that first 
and the second elastic motion overtones lead 
to slight oscillation caused by dynamics of the 
first overtone. 

Dynamic performances of the closed loop 
control flight control system were found using 
[2, 16, 18] to be: 
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(3.3) 
From eq. (3.3) follows that complex 

conjugate roots of 2,1λ , and, 5,4λ  are 
developed by the elastic motion high 
frequency dynamics. 

 
Fig 5. Aircraft pitch rate responses. 

controlled rigid aircraft controlled elastic aircraft 
 

4. FREQUENCY DOMAIN ANALYSIS 
OF THE LONGITUDINAL STABILITY 
AUGMENTATION SYSTEM OF THE 

AIRCRAFT 
 
Robust stability analysis gives answer to 
question ‘if the static controller is able to 
stabilize the true plant?’ Firstly, let us analyze 



the frequency domain behavior of the additive 
uncertainty. Bode diagram of the uncertainty 
can be seen in Fig 6. 

 
Fig 6. Bode diagram of the additive uncertainty. 

 
Uncertainty gain has resonance peak at 5 

rad/s. This is because of the D-term in the 
numerator of eq. (2.13). Both in low and in 
high frequency domain the gain is small. The 
additive uncertainty affects the open loop 
system frequency domain behavior. Results of 
the computer simulation can be seen in Fig 7. 

 
Fig 7. Bode Diagram of the Open Loop 

Nominal and Perturbed Systems. 
nominal SAS          perturbed SAS 

 
From Fig 7. it can be seen the effect from 

elastic motion dynamics, which can be 
considered for additive uncertainty. At 
resonance frequencies of 5 rad/s and at 10 
rad/s the gain and the phase angle have peak in 
their values. The open loop gain and the phase 
angle are increased only at the resonance 
frequency and in its bordering domain. 

 
 

5. ROBUSTNESS ANALYSIS OF THE 
LONGITUDINAL STABILITY 

AUGMENTATION SYSTEM OF THE 
AIRCRAFT 

 
From Fig 3. following transfer functions 

can be obtained [1, 2, 7]: 

(s)G(s)(s)KK1
1)(S

sc+
=s ,        (5.1) 

which is sensitivity transfer function, and, 

(s)G(s)(s)K1
(s)G(s)KT(s)

c

c

sK+
= ,        (5.2) 

which is closed loop complementary transfer 
function. 

Using simplified block diagram of SAS 
(see Fig 3.), and using eq (2.16), and 
parameters defined for sensor transfer 
function, and the feedforward static controller, 
sensitivity and complementary transfer 
functions were found to be [16, 18]: 

137,5230ss
75150sT(s) 2 ++

+
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137,5230ss
525ssS(s) 2

2

++
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Results of the computer simulation in the 
frequency domain can be seen in Fig 8. 

 
Fig 8. Sensitivity and the Closed Loop 
Complementary Transfer Functions. 

Closed loop complementary transfer function of 
T(s) 

Sensitivity transfer function of S(s) 
 
Conditions of robust stability under additive 

uncertainty can be determined using the small-
gain theorem. 



  

       
            “HENRI COANDA”                                                                                                                                                                                                                    “GENERAL M.R. STEFANIK”

AIR FORCE ACADEMY                                                                                                                                                                                                                 ARMED FORCES ACADEMY  
                ROMANIA                                                                                                                                                                                                                                       SLOVAK REPUBLIC 
 

INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER AFASES 
Brasov 

 

 
Transfer function seen by the additive 

uncertainty is given by 
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)(
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1
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The feedback system will be robustly stable 
if takes place the following inequality: 
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1
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or in other manner 
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From eq (5.6) it is evident that the closed 
loop system equipped with static controller can 
be said robustly stable if and only if additive 
uncertainty gain )(saΔ  less than magnitude of 
the inverse of transfer function of . )(sMa

If the additive uncertainty is stable and 
bounded one can write that 

)(saΔ <
γ
1 .           (5.8) 

The closed loop robust stability can be 
guaranteed if 

)(sSKK cs <
γ
1 , or )( sSKK csγ <1.     (5.9) 

The Additive Stability Margin (ASM) can be 
defined by 

)(sup
1

ω
ω

jSKK
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cs
= .       (5.10) 

For the MIMO feedback system the size of 
the smallest additive uncertainty destabilizing 
the feedback system can be derived as follows: 

[ ] [ ])(
1)(

ωσ
ωσ

jSKK
j

cs
a =Δ .      (5.11) 

Condition of robust stability defined by 
eq (5.7) was analyzed and the closed loop 
system given in Fig 3. was tested for this 
inequality. Results of the computer simulation 
can be seen in Fig 9. 

 
Fig 9. The Inverse Sensitivity Transfer Function 

and the Additive Uncertainty Gain 
1/Ma(s)  DeltaA(s) 

 
From Fig 9. it is evident that magnitude of 

the transfer function seen by the additive 
uncertainty of  larger than the additive 
uncertainty gain of 

)(sM a
)(saΔ : i.e. closed loop 

control system of the longitudinal stability 
augmentation system working with simple 
static controller of  can be said robustly 
stable. For uncertainty given by eqs (2.13)-
(2.14) additive stability margin is, 

cK

4874,4=ASM . 
 

6. SUMMARY AND CONCLUSIONS 
The paper dealt with basic equations of the 
aircraft elastic motion. The transfer function of 
the elastic aircraft was derived. The high 
frequency dynamics generated by elevator 
deflection has been involved as additive 
uncertainty. The closed loop control system of 
the aircraft longitudinal stability augmentation 
system was analized for the 1st and for the 2nd 
overtones of the fuselage elastic motion. The 
transient behavior, Bode diagrams and the 
dynamic performances were derived and 
analized. The robust stability was derived 
using small gain theorem for additive 
uncertainty. It was stated that for the given 



uncertainty the closed loop system is robustly 
stable even when it is equipped with static 
controller. 
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