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Abstract: In this part we continue the presentation from part I . The present paper demonstrates that this 
class of ”max-stable’’ distributions is made up of distributions with extreme values and each max-stable 
distributions matches one of the parametric forms corresponding to the distributions known as Gumbelle, 
Frechet, Weibull. In the end we present an important  result for ( ) independent random 
variables,identically and normally distributed, the series of random variables ( ) weakly converges 
to a Gumbell allotment. 
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1. THEOREM OF EXTREME TYPES 

Theorem 1.2  

May  where  are 
independent and identically distributed random 
variables. If  and  constants and   

),...,,max( 21 nnM εεε= iε

0>na nb

( ) )()( xGxbMaP w
nnn ⎯→⎯≤−      (1.1) 

For some nondecreasing G functions, then 
G coincides with one of the three types of 
extreme values previously defined. 

Reciprocally, each G distribution function 
of the extreme value type which appears as a 
limit of type (1.1) is unique distribution 
function for function . iε

Proof 
 If (1.1) is valid, Theorem 3.1 shows that G 

is max-stable and consequently from theorem 
1.1 is of extreme value type. Reversibly, if G 
is of extreme value type, is max-stable from 
theorem 1.1 and theorem 3.1(b) shows that 

. )(GDG ∈

If  are not necessarily 
independent, but  has 
an asymptotical distribution G in the bearing 
of (1.4), then (3.1) is true for , where  
is distribution function of . If one can 
show that if (3.1) is true for , then it is 
true for all k, so it will result that G is max-
stable from theorem 3.1 (a) and as a result G is 
extreme value type. 
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1=k nF
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1=k

Thus our focus when considering dependent 
cases will consist only in showing that under 
the correct assumptions, the truth from (3.1) 
for  implies the truth from (3.1). For all k, 
from where, again, it results the Theorem of 
extreme types. 

1=k

Coming back to the case independent and 
identically distributed random variables we 
note that theorem 1.1 assumes that 

 has a nondecreasing limit 
distribution function G and than it 
demonstrates that G must have one of the three 
presented forms. It is easy to build the 
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sequences , independent and identically 
distributed random variables for which there is 
not such a G. in order to see an easy example, 
for this case it is convenient to use the notation 

. 

}{ nε

)}(1)(;sup{ ∞<<= xFxxF
That means that  for all  and 

 for all . We assume that each 
 has a distribution function which is such as 

 and thus F has at  a continuity 
point i.e. . Then it results 
that if  is any sequence and 

1)( <xF Fxx <
1)( =xF Fxx ≥

nε
∞<Fx Fx

( ) ( FF xFxF =<− 1 )
}{ nu
ρ→≤ }{ nn uMP , then 0=ρ  or 1. Thus 

if , it follows 

taking a 
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n
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a
xu += , that  or 1 for 

each x, so that G is nondecreasing. 

0)( =xG

2. CONVERGENCE OF  }{ nn uMP ≤
We have taken into consideration 

convergence of the probabilities of the form 
 which can be rewritten as 

, where  

})({ xbMaP nnn ≤−

}{ nn uMP ≤ n
n

nn b
a
xxuu +== )( . 

The convergence was asked for all x. On the 
other hand, we are interested in considering 
the sequences  which can be non 
dependent on any parameter x or can be 
functions more complicated than the linear one 
considered above. 

}{ nu

The next theorem is almost trivial in the 
context independent and identically 
distribution but it is also very important and 
will be extended through important means in 
order to be applied (stationary) to the 
dependent sequences and continuous time 
processes. 

Theorem 2.1 
May  a selection of independent and 

identically distributed random variables. May 
 with the assumption that if  is 

a sequence of real numbers for which: 
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Conversely, if (2.2) holds true for a τ with 
 then the relation (2.1) it is true. +∞≤τ≤0

Proof  
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According to the hypothesis, from 
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For  limited by O for the 
sequence   according to the relation (2.3) 
from which it results: 
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Finally if  and (2.1) is true but (2.2) 
is not true, there must be a sequence  so 

that  while  for 
. But the relation (2.2) implies (2.1) with 

 replacing n so that 
, contradicting the 

assumption that (2.2) is true for . 
Similarly  (2.2) implies (2.1) when . 
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Corollary 2.2 
(1)  with probability 1 for )( +∞≤→ Fn xM

∞→n . 
(2) If and∞<Fx ( ) 1<−FxF  and if for the 

sequence , }{ nu ( ) ρ→≤ nn uMP  then 0=ρ  
or 1=ρ . 

Proof   
If  so that (2.1)  is 

true for  and from (2.2) we 
obtain . But 

 for any n, from where it 
results  in probability. As  is 
monotonous and convergent it results that 

 and point (1) is proved. 
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the sequence so that }{ nu ρ→≤ )( nn uMP . 

As [ 1,0∈ ]ρ  we can write  
and from the theorem 2.2 we obtain 

. 
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Fn Xu <
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Therefore  or  and consequently 
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We go on bringing into discussion the 
interest domain of distributions with extreme 
values. The normal selections are important 
and consequently it is demonstrated that 
theorem 2.1 can be used directly to obtain 
asimpthotic laws of type Tip I for normal 
independent and identically distributed 
selections. 

We consider  the normal standard 
distributive function and Φ the density 
function corresponding to the mention that 
there will be repetitively used the known 
relation of connection: 
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u
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Theorem 2.3 
If  is a normal selection independent 

and identically distributed (standard) of 
random variables, then the asimpthotical 
distribution of  is of 
Type I and  
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From (2.2) we have 
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(2.5) Q.E.D. 
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