AIR FORCE ACADEMY

INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER
 AFASES 2012
 Brasov, 24-26 May 2012

MAX-STABLE DISTRIBUTION - part II

Cornelia GABER*, Maria STOICA**
*PETROLEUM-GAS University of Ploieşti, România, **Nichita Stănescu - High Scool, 3 Nalbei, Ploieşti, Romania

Abstract

In this part we continue the presentation from part I. The present paper demonstrates that this class of "max-stable", distributions is made up of distributions with extreme values and each max-stable distributions matches one of the parametric forms corresponding to the distributions known as Gumbelle, Frechet, Weibull. In the end we present an important result for $\left(\varepsilon_{n}\right)_{n}$ independent random variables,identically and normally distributed, the series of random variables $\left(M_{n}\right)_{n}$ weakly converges to a Gumbell allotment.

Mathematics Subiect Classifications 2010: 60G70
Keywords: random variables, distribution function, convergence, sequences, maximum likelihood estimation.

1. THEOREM OF EXTREME TYPES

Theorem 1.2

May $M_{n}=\max \left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right)$ where ε_{i} are independent and identically distributed random variables. If $a_{n}>0$ and b_{n} constants and

$$
\begin{equation*}
P\left(a_{n}\left(M_{n}-b_{n}\right) \leq x\right) \xrightarrow{w} G(x) \tag{1.1}
\end{equation*}
$$

For some nondecreasing G functions, then G coincides with one of the three types of extreme values previously defined.

Reciprocally, each G distribution function of the extreme value type which appears as a limit of type (1.1) is unique distribution function for function ε_{i}.

Proof

If (1.1) is valid, Theorem 3.1 shows that G is max-stable and consequently from theorem 1.1 is of extreme value type. Reversibly, if G is of extreme value type, is max-stable from theorem 1.1 and theorem 3.1(b) shows that $G \in D(G)$.

If $\varepsilon_{1}, \varepsilon_{2}, \ldots$ are not necessarily independent, but $M_{n}=\max \left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right)$ has an asymptotical distribution G in the bearing of (1.4), then (3.1) is true for $k=1$, where F_{n} is distribution function of M_{n}. If one can show that if (3.1) is true for $k=1$, then it is true for all k, so it will result that G is maxstable from theorem 3.1 (a) and as a result G is extreme value type.

Thus our focus when considering dependent cases will consist only in showing that under the correct assumptions, the truth from (3.1) for $k=1$ implies the truth from (3.1). For all k, from where, again, it results the Theorem of extreme types.

Coming back to the case independent and identically distributed random variables we note that theorem 1.1 assumes that $a_{n}\left(M_{n}-b_{n}\right)$ has a nondecreasing limit distribution function G and than it demonstrates that G must have one of the three presented forms. It is easy to build the
sequences $\left\{\varepsilon_{n}\right\}$, independent and identically distributed random variables for which there is not such a G. in order to see an easy example, for this case it is convenient to use the notation $x_{F}=\sup \{x ; F(x)<1\}(<\infty)$.
That means that $F(x)<1$ for all $x<x_{F}$ and $F(x)=1$ for all $x \geq x_{F}$. We assume that each ε_{n} has a distribution function which is such as $x_{F}<\infty$ and thus F has at x_{F} a continuity point i.e. $F\left(x_{F-}\right)<1=F\left(x_{F}\right)$. Then it results that if $\left\{u_{n}\right\}$ is any sequence and $P\left\{M_{n} \leq u_{n}\right\} \rightarrow \rho$, then $\rho=0$ or 1. Thus if $P\left\{a_{n}\left(M_{n}-b_{n}\right) \leq x\right\} \rightarrow G(x), \quad$ it follows taking a $u_{n}=\frac{x}{a_{n}}+b_{n}$, that $G(x)=0$ or 1 for each x, so that G is nondecreasing.
2. CONVERGENCE OF $P\left\{M_{n} \leq u_{n}\right\}$

We have taken into consideration convergence of the probabilities of the form $P\left\{a_{n}\left(M_{n}-b_{n}\right) \leq x\right\}$ which can be rewritten as $P\left\{M_{n} \leq u_{n}\right\}$, where $u_{n}=u_{n}(x)=\frac{x}{a_{n}}+b_{n}$.

The convergence was asked for all x. On the other hand, we are interested in considering the sequences $\left\{u_{n}\right\}$ which can be non dependent on any parameter x or can be functions more complicated than the linear one considered above.

The next theorem is almost trivial in the context independent and identically distribution but it is also very important and will be extended through important means in order to be applied (stationary) to the dependent sequences and continuous time processes.

Theorem 2.1

May $\left\{\varepsilon_{n}\right\}$ a selection of independent and identically distributed random variables. May $0 \leq \tau \leq+\infty$ with the assumption that if $\left\{u_{n}\right\}$ is a sequence of real numbers for which:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left(1-F\left(u_{n}\right)\right)=\tau \tag{2.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left\{M_{n} \leq u_{n}\right\}=\mathrm{e}^{-\tau} \tag{2.2}
\end{equation*}
$$

Conversely, if (2.2) holds true for a τ with $0 \leq \tau \leq+\infty$ then the relation (2.1) it is true.

Proof

"=>"
If $0 \leq \tau \leq+\infty$ so that:
$P\left\{M_{n} \leq u_{n}\right\}=F^{n}\left(u_{n}\right)=\left\{1-\left(1-F\left(u_{n}\right)\right\}^{n}\right.$
According to the hypothesis, from $\lim _{n \rightarrow \infty} n\left(1-F\left(u_{n}\right)\right)=\tau \Rightarrow$ there is n_{r} so that any $n \geq n_{r}$

$$
\begin{gathered}
\left|n\left(1-F\left(u_{n}\right)\right)-\tau\right|<r \\
-r<n\left(1-F\left(u_{n}\right)\right)-\tau<r \mid+\tau \\
\tau-r<n\left(1-F\left(u_{n}\right)\right)<r+\tau \mid: n \\
\frac{\tau-r}{n}<1-F\left(u_{n}\right)<\frac{r+\tau}{n}(-1) \\
\left.-1+\frac{\tau-r}{n}<-F\left(u_{n}\right)<-1+\frac{r+\tau}{n} \right\rvert\,(-1) \\
1-\frac{r+\tau}{n}<F\left(u_{n}\right)<1-\frac{r-\tau}{n} \\
1-\frac{\tau}{n}-\frac{r}{n}<F\left(u_{n}\right)<1-\frac{\tau}{n}+\frac{r}{n}
\end{gathered}
$$

Therefore

$$
\begin{aligned}
& P\left(M_{n} \leq u_{n}\right)=\left(1-\frac{\tau}{n}+0\left(\frac{1}{n}\right)\right)^{n} \Rightarrow \\
& \lim _{n \rightarrow \infty} P\left\{M_{n} \leq u_{n}\right\}=1^{\infty}=\mathrm{e}^{\lim _{n \rightarrow \infty}\left(-\frac{\tau}{n}+0\left(\frac{1}{n}\right)\right) \cdot n} \\
& =\mathrm{e}^{\lim _{n \rightarrow \infty}\left(-\tau+n \cdot 0\left(\frac{1}{n}\right)\right)}=\mathrm{e}^{-\tau} . \\
& "<="
\end{aligned}
$$

From
$\lim _{n \rightarrow \infty} P\left(M_{n} \leq u_{n}\right)=\lim _{n \rightarrow \infty}\left\{1-\left(1-F\left(u_{n}\right)\right\}^{n}=\right.$
$=e^{-\tau} \Rightarrow\left(1-F\left(u_{n}\right)=0\right.$
For $1-F\left(u_{n k}\right)$ limited by O for the sequence $\left\{n_{k}\right\}$ according to the relation (2.3) from which it results:

$$
\left.\begin{array}{l}
\lim _{n \rightarrow \infty} P\left(M_{n} \leq u_{n}\right)=0 \\
\ln P\left(M_{n} \leq u_{n}\right)=\ln \mathrm{e}^{-\tau}=-\tau \\
\ln P\left(M_{n} \leq u_{n}\right)=n \ln \left(1-\left(1-F\left(u_{n}\right)\right)\right) \\
n \ln \left(1-\left(1-F\left(u_{n}\right)\right)\right) \rightarrow-\tau \\
n\left(1-F\left(u_{n}\right)\right)(1+O(1)) \rightarrow \tau
\end{array}\right\} \Rightarrow
$$

"HENRI COANDA"
AIR FORCE ACADEMY
ROMANIA

INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER

AFASES 2012
Brasov, 24-26 May 2012

Finally if $\tau=\infty$ and (2.1) is true but (2.2) is not true, there must be a sequence $\left\{n_{k}\right\}$ so that $P\left\{M_{n} \leq u_{n}\right\} \rightarrow \mathrm{e}^{-\tau}$ while $k \rightarrow \infty$ for $\tau^{\prime}<\infty$. But the relation (2.2) implies (2.1) with $n_{k} \quad$ replacing n so that $n_{k}\left(1-F\left(u_{n k}\right)\right) \rightarrow \tau^{\prime}<\infty, \quad$ contradicting \quad the assumption that (2.2) is true for $\tau=\infty$. Similarly (2.2) implies (2.1) when $\tau=\infty$.

Corollary 2.2

(1) $M_{n} \rightarrow x_{F}(\leq+\infty)$ with probability 1 for
$n \rightarrow \infty$.
(2) If $x_{F}<\infty$ and $F\left(x_{F^{-}}\right)<1$ and if for the sequence $\left\{u_{n}\right\}, P\left(M_{n} \leq u_{n}\right) \rightarrow \rho$ then $\rho=0$ or $\rho=1$.

Proof
If $\lambda<x_{F}(\pm \infty), 1-F(\lambda)>0$ so that (2.1) is true for $u_{n}=\lambda, \tau=\infty$ and from (2.2) we obtain $\quad \lim _{n \rightarrow \infty} P\left(M_{n} \leq \lambda\right)=0$. But $P\left(M_{n}>x_{F}\right)=0$ for any n, from where it results $M_{n} \rightarrow x_{F}$ in probability. As $\left\{M_{n}\right\}$ is monotonous and convergent it results that $M_{n} \rightarrow x_{F}$ and point (1) is proved.
Assuming that $x_{F}<\infty$ and $F\left(x_{F^{-}}\right)<1$. Let the sequence $\left\{u_{n}\right\}$ so that $P\left(M_{n} \leq u_{n}\right) \rightarrow \rho$. As $\rho \in[0,1]$ we can write $\rho=\mathrm{e}^{-\tau}, 0 \leq \tau<\infty$ and from the theorem 2.2 we obtain $n\left(1-F\left(u_{n}\right)\right) \rightarrow \tau$.
If $u_{n}<X_{F}$ for an infinite number of values of n and because
$1-F\left(u_{n}\right) \geq 1-F\left(x_{F^{-}}\right)>0$ we have $\tau=\infty$ and $u_{n} \geq X_{F}$ and we obtain

$$
\left.\begin{array}{c}
n\left(1-F\left(u_{n}\right)\right)=0 \\
n\left(1-F\left(u_{n}\right)\right) \rightarrow \tau
\end{array}\right\} \text { results that } \tau=0 \text {. }
$$

Therefore $\tau=\infty$ or $\tau=0$ and consequently $\rho=0$ or $\rho=1$ Q.E.D.

We go on bringing into discussion the interest domain of distributions with extreme values. The normal selections are important and consequently it is demonstrated that theorem 2.1 can be used directly to obtain asimpthotic laws of type Tip I for normal independent and identically distributed selections.

We consider J the normal standard distributive function and Φ the density function corresponding to the mention that there will be repetitively used the known relation of connection:

$$
\begin{equation*}
1-J(u) \approx \frac{\Phi(u)}{u} \text { when } u \rightarrow \infty . \tag{2.4}
\end{equation*}
$$

Theorem 2.3

If $\left\{\varepsilon_{n}\right\}$ is a normal selection independent and identically distributed (standard) of random variables, then the asimpthotical distribution of $M_{n}=\max \left(\varepsilon_{1}, \varepsilon_{2}, \ldots \varepsilon_{n}\right)$ is of Type I and

$$
\begin{equation*}
P\left\{a_{n}\left(M_{n}-b_{n}\right) \leq x\right\} \rightarrow \exp \left(-\mathrm{e}^{-x}\right) \tag{2.5}
\end{equation*}
$$

Where $a_{n}=(2 \ln n)^{1 / 2}$ and

$$
b_{n}=(2 \ln n)^{1 / 2}-\frac{1}{2}(2 \ln n)^{-1 / 2}(\ln \ln n+\ln 4 \pi)
$$

Proof

We choose $\tau=e^{-x}$ in relation (2.1), then $1-J\left(u_{n}\right)=\frac{1}{n} e^{-x}$
$1-J\left(u_{n}\right) \approx \frac{\Phi\left(u_{n}\right)}{u_{n}}$$\Rightarrow \frac{\frac{1}{n} e^{-x} \cdot u_{n}}{\Phi\left(u_{n}\right)} \rightarrow 1$ and by looking up its logarithm we obtain:

$$
\left.\begin{array}{c}
-\ln n-x+\ln u_{n}-\ln \Phi\left(u_{n}\right) \rightarrow 0 \\
\Phi\left(u_{n}\right)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{u_{n}^{2}}{2}} \tag{2.6}
\end{array}\right\} \Rightarrow
$$

As $\frac{u_{n}^{2}}{2 \ln n} \rightarrow 1$ we obtain
$2 \ln u_{n}-\ln 2-\ln (\ln u) \rightarrow 0 \Rightarrow$
$\ln u_{n}=\frac{1}{2}(\ln 2+\ln (\ln u))+0(1)(*)$
Using $(*)$ in (2.6) we obtain

$$
\begin{gathered}
-\ln n-x+\frac{1}{2}(\ln 2+\ln (\ln u))+0(1)+\frac{1}{2} \ln 2 \pi \\
\frac{u_{n}^{2}}{2}=x+\ln n-\frac{1}{2} \ln 4 \pi-\frac{1}{2} \ln (\ln n)+0(1) \\
u_{n}^{2}=2 x+2 \ln n-\ln 4 \pi-\ln (\ln n)+\theta(2) \\
u_{n}^{2}=(2 \ln n)\left(\frac{x}{\ln n}+1-\frac{\ln 4 \pi-\ln (\ln n)}{2 \ln n}+\theta\left(\frac{1}{\ln n}\right)\right)
\end{gathered}
$$

$$
u_{n}(2 \ln n)^{\frac{1}{2}}\left(1+\frac{x-\frac{1}{2} \ln 4 \pi-\frac{1}{2} \ln (\ln n)}{\ln n}+\theta\left(\frac{1}{\ln n}\right)\right)^{\frac{1}{2}}
$$

$$
u_{n}=(2 \ln n)^{\frac{1}{2}}\left(1+\frac{x-\frac{1}{2} \ln 4 \pi-\frac{1}{2} \ln (\ln n)}{2 \ln n}\right.
$$

$$
\left.+\theta\left(\frac{1}{2 \ln n}\right)\right)
$$

$$
u_{n}=(2 \ln n)^{\frac{1}{2}} \cdot \frac{x}{2 \ln n}+\left((2 \ln n)^{\frac{1}{2}}-\right.
$$

$$
\left.-(2 \ln n) \frac{\frac{1}{2} \ln 4 \pi+\frac{1}{2} \ln (\ln n)}{2 \ln n}+\theta\left((2 \ln n)^{\frac{1}{2}} \frac{1}{2 \ln n}\right)\right)
$$

$$
u_{n}=\frac{x}{(2 \ln n)^{1 / 2}}+\left((2 \ln n)^{\frac{1}{2}}-\right.
$$

$$
\left.-\frac{1}{2} \frac{\ln 4 \pi+\ln (\ln n)}{(2 \ln n)^{1 / 2}}+\theta\left(\frac{1}{(2 \ln n)^{1 / 2}}\right)\right)
$$

$$
u_{n}=\frac{x}{a_{n}}+b_{n}+\theta\left(a_{n}^{-1}\right)
$$

From (2.2) we have

$$
P\left(M_{n} \leq u_{n}\right) \rightarrow \exp \left(-\mathrm{e}^{-x}\right) \text { where } \tau=\mathrm{e}^{-x}
$$

$$
P\left\{M_{n} \leq \frac{x}{a_{n}}+b_{n}+\theta\left(a_{n}^{-1}\right)\right\} \rightarrow \exp \left(-\mathrm{e}^{-x}\right) \text { or }
$$

$$
\begin{equation*}
P\left\{a_{n}\left(M_{n}-b_{n}\right)+\theta(1) \leq x\right\} \rightarrow \exp \left(-\mathrm{e}^{-x}\right) \text { that is } \tag{2.5}
\end{equation*}
$$

References

1. Anserson, C.W., Extreme value theory for a class of discrete distributions with applications to some stochastic processes. $\frac{u_{n I . A p p p l . P r o b a b .7,99-113, ~(1970) . ~}^{2}}{2}$
2. Balkema, A.A. and Haan, L. de. On R.von Mises' condition for the domain of attraction of $\exp (-\exp (-\mathrm{x}))$. Ann.Math.Statist. 43,1352-1354, (1972).
3. Barndorff-Nielsen, O., On the limit distribution of the maximum of a random number of random variable. Acta. Math. Acad.
Sci. Hungar, 15,399-403, (1964).
4. Berman, S.M. Limiting distribution of the maximum term in sequences of dependent random variables, Ann. Math. Statist. 33,894908, (1962).
5. Berman, S.M. Limit theorems for the maximum term in stationary sequences, Ann. Math. Statist. 35,502-516, (1964).
6. Davis, R.A., Maxima and minima of stationary sequences. Ann.Probab. 7, 453-460, (1979).
7. Deheuvels, P., Valeur extremales d'echantillons croissants d'une variable aleatoire réelle. Ann.Inst.H.Poincaré. 10, 89114, (1974).
8. Epstein, B., Elements pf the theory of extreme values, Thechnometrics 2, 27-41, (1960).
9. Feller, W., An Introduction to Probability Theory and Its Applications, Vol. $1,3{ }^{\text {rd }}$ ed. New York: Wiley, (1968).
10. Green, R.F. Partial attraction of maxima. J.Appl.Probab. 13,159-163, (1976).
11. Haan, L. de, Sample Extremes: an elementary introduction. Statist.Neerlandica, 30, 161-172, (1976).
12. Hall, P., On the extreme terms of a sample from the domain of attraction of a

INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER
 AFASES 2012
 Brasov, 24-26 May 2012

stable law, L.London.Math.Soc., 18,181-191, (1978).
13. Hall, P., Representations and limit theorems for extreme value distributions, . J.Appl.Probab. 15, 639-644, (1978).
14. Tiago de Oliveira, J., Extremal distributions, Rev.Fac.Sci.Lisboa, Ser.A, 7, 215-227, (1958).
15. Weinstein, S.B., Theory and application of some classical and generalizes asymptotic distributions of extreme values. IEEE Trans. Inform. Theory, 19, 148-154, (1973).

