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Abstract: The topic is present, because more and more frequently we have been dealing with the 
issue of extreme values predictions which can be registered for certain phenomena which 
possess a random behaviour due to their very nature. The limitation of a distribution 
corresponding to a selection of identically distributed and independent random variables 
(v.a.i.i.d) having the stability property defines a distribution class called ,,max-stable’’. 
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1. Introduction 
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where F is the common distribution function 
of nii ,1, =ε . 

The possibilities for the distribution’s limit 
define a class with a certain property of 
stability, made of the so-called max-stable 
distributions. This class is formed by three 
distributions with extreme values and each 
max-stable distribution G has one of the 
parametrical forms, defined as  follows: 
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The study refers especially to the 
conditions in which for the adequate 
normalizing constants , there should 
be verified that: 

nn ba ,0>
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were  denotes ,,weak convergence” ⎯→⎯w

It will be shown that the convergence 
appears in the continuity points of G, 
afterwards determining which G of the 
distribution function can appear as a limit and 
it is possible that G non confluent of the 
distribution function should form the max-
stabile distribution class. 



Using the relations (1.1) and (1.2) we 
obtain:  
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2. CONVERSE FUNCTIONS AND 

KHINTCHINE’S CONVERGENCE 
THEOREM 

 
The inverse of the monotonous functions 

can be defined in different ways according to 
the intended purpose. For the following study,  
let us choose the next means for building these 
functions. 

If  is a continuous function, 
nondecreasing, we define the inverse function 

 on the interval  

through . 
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The definition domain of the function  
is presented as an open interval, but it can also 
be closed at any end   respectively 

 tempts towards finite values for x. 
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Lemma 2.1.   

1) For Ψ  previously defined , if  
constant and  then 
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2) For Ψ  previously defined, if  is 

continuous , then . 
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3) If G is a nondegenerate distribution 
function, then  there exists  so that  

 are well defined (and 
finite). 
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2) According to the definition of  and 

property of function  as nondecreasing, we 
obtain . 
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If there is a  z so that for z < x we have 
 then taking into account that 

 is nondecreasing, we get 

 so, from relations (*) and 
(**) we obtain . 

(*))()( xz Ψ≥Ψ
Ψ

(**))()( xz Ψ≤Ψ
)()( xz Ψ=Ψ
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3) If G is nondecreasing, then there is 
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Corollary 2.2 

If G is a nondecreasing distribution 
function and a, α, b, β constants with 

 so that 0,0 >α>a )()( β+α=+ xGbaxG  for 
any x, then  and α=a β=b .  

Proof   
Let  and  which 

fulfill the request (3) from Lemma 2.1, such 
that  and . Using 
the request (1) from Lemma 2.1 we obtain 
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Theorem (Khintchine) (2.3) 

Let the system {  of distribution 
functions and let G be a nondecreasing 
distribution function. We consider the 
adequate constants  so that: 
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Then for certain  nondecreasing 
distributive functions and for the constants 
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If  (2.1’), (2.3’), (2.4) are true then: 
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As   is a nondecreasing distribution 
function there is  and  so that 

 and . 

•G
'x "x

1)'(0 << • xG 1)"(0 << • xG

We consider the sequences   

and  which must be bounded . 

}'{ ,,
nn x β+α

}"{ ,,
nn x β+α
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•G  being a nondecreasing distribution 
function with . 0>a

If we consider another subsequence 

 bounded with  and 

 then: 
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3. Max – stable distributions 
 
In this part we look for those G of the 

distribution functions which are possible 
asimpthotic laws for the maximum of the 
distributed independent and identical 
selections which form the max–stable 
distributions class.  



Definition 3.1. G, a nondecreasing 
distribution function, is called max–stable if 
there are the constants  so that nn ba ,
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for all .                                              (3.1)  R∈x

Theorem 3.1. 
a) G nondecreasing distribution function is 

max–stable if and only if there is a sequence 
 of the distribution functions and the 

constants  so that  
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so that  (3.2) becomes evident. 
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Corollary 3.2 

If G is max–stable, there are real functions 
 defined for  so that : 0)(,0)( >> sbsa 0>s
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 is nondecreasing, theorem 2.3 is applied 
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Definition 3.2. 

We can say that two distribution function 
 are of the same type if 

, for some constants 
. Then the above definition of the 

max–stabile distribution can be rephrased as 
follows:  A  distribution function G  
nondecreasing is max–stable if for each 

  distribution function is of the 
same type as G. 
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Further the theorem 2.3 shows that if  
is a selection of distribution function with 

, , 
, then  are of the same 

type, taking into account that they are non 
decreasing. So distribution function can be 
divided into equivalent classes (that we call 
types) saying that  and  are equivalent if 

 for some . 
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Thus if  are of the same type 
. Similarly we can see the 

theorem from theorem 2.3 that if  
and  then  and  of the same 
type . from this reason  are 
identical if  and  are of the same type 
and are thus disjoint . 
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That means that the attraction domain of  
G distribution function depends only on G’ s 
type. 

Theorem 3.3 
Each max–stable distribution is of the same 
type as one of the following three distributions 
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Reciprocally, each distribution of the type 
of extreme value is max–stable. 

Proof  
From this moment, the centering is clear 

on the example for type I. 
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with similar expressions for types II and III. 
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Now we can notice from the max–stable 
property with  that G can not tempt to 
any finite point. Thus, for the nondecreasing 
function  we have 

  and has as 
inverse function the function  defined for 
all . 
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}exp{)( /)( ρν−−−= xexG ,  1)(0 << xG
G can not reach any finite point and 

consequently it has the above form for all x 
and thus it is of type I. 
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monotonous (from 3.8) and the only non 
constant solutions of the functional equation 
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From its continuity in any finite point we 
can  see that G is of type II or type III, 
with ρ+= /1a  

or ρ−= /1a  as , if 0>ρ ,  and 0<c 0<ρ  if 
. 0>c
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