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Abstract: Linear partial differential equations of second order hyperbolic type are involved in describing 
oscillating and wave processes in elastic and electromagnetic mediums. In this paper we study two 
equations, from the canonical form [1] of equation of hyperbolic type, and using the method of 
integration along the corresponding characteristics, we obtain the first order derivative of ( )tiχ  with 

respect to t.  
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1. INTRODUCTION 
 
Linear partial differential equations of 

second order hyperbolic type have a wide 
range of applications in mathematical physics 
problems. They appear in the description of 
oscillatory and wave processes in elastic and 
electromagnetic environments. Certain types 
of first order hyperbolic systems can be 
reduced to wave equation [2]. But a second 
order hyperbolic equation, in turn, can be 
treated as a first order hyperbolic system. 

 
Let consider the set  

      ,                (1) ( ){ }TtRxtxT ≤≤∈=Ω   0  ,:,
and the second order hyperbolic equation  
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The subsidiary information about the problem 
(2)-(3) solutions is  
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We wish to find a function from (2)-(4) with 

the form  

where  and  are the known 

functions, while the unknown functions , 

, are sought. Let 
 and let the function 

 be positive, bounded and twice 
continuously differentiable. The equation of 
the characteristics 
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where  ;2,1=i 11 −=ε  şi 12 =ε . 

 
2. PROBLEM FORMULATION 

 
Let us consider second-order hyperbolic 

equation where the coefficients  and 
 are taken zero. In these 

circumstances we can establish the following 
result [1]: 

( ) 0, =txb
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The equation 
                                     (6) Fduuau xxtt ++= 2

is equivalent with the system  
      ,                                  (7) Φ++= DrKrr xt

where the new unknowns are given by the the 
following relations: 
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3. PROBLEM SOLUTION 

 
Lemma. Let the system Φ++= DrKrr xt  

and the relationships ( ) ( )
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    Proof.  From ( ) (ttxu ii )χ=, ,   , Tt ≤≤  0 

and given that vut =  we get relations 
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Integrating equality vut =  results: 
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We integrate the second equation of system 
(7), along the corresponding characteristic, as 
follows: 
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Using the integral along the characteristic 
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Integrate the third equation of system (7), 
along the corresponding characteristic using 
the similar calculations, we have: 
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Adding the relations (25) and (26) and 
multiplying the result by ( txa , )  we obtain: 
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We now consider the relationship 
( ) vrra =+ 32  and get to the equation: 
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which is a known function, because: 
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We know that ( ) ( )ttxv ii
′= χ, , , so ni ≤≤  0 the 

remaining equations are obtained from 
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4. CONCLUSIONS 
 

In this article we found the first order 
derivative of ( )tiχ  with respect to t, 
integrating along the corresponding 
characteristics the last two equations of the 
canonical form of a second order hyperbolic 
equation. This derivative is useful in proving 
the theorem of existence and uniqueness of the 
solution of inverse problem (2)-(4). 
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