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Abstract: Within this paper, there is established the system of ordinary equations of the trajectory of a 
rocket with respect to the Earth, while taking into account, the aerodynamic drag, the weight, and the 
Earth's rotation and curvature. The local latitude and the longitude during the, flight, which implicitly 
appear in the expressions of the forces acting upon the rocket, are also calculated. The mathematical 
model thus obtained is rendered in forms utilized in ballistics. This system of equations can also he used 
for the calculation of the trajectory of an active-reactive projectile, and also, with some adjustments, for 
the calculation of the orbit of an aerospace vehicle. 
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1.1.1 THE THRUST 
1. THE EXPRESSIONS OF THE 

FORCES ACTING ON THE ROCKET 
WITHIN THE HYPOTHESIS OF THE 
FUNDAMENTAL PROBLEM OF THE 

EXTERNAL BALLISTICS 

 
It is assumed that the thrust, T , is oriented 

along the axis of the rocket, which in turn 
(whithin the main hypothesis of the 
fundamental problem of the external ballistics) 
is tangent to the trajectory (Figure 1). The vector equation of the rocket’s, 

equation cFR
dt
Vdm +++=⋅ GT  of [9], 

contains the forces which effectively act on the 
rocket:  

- engine’s thrust, ; T
- the aerodynamic resultant force, aF , 

which, within the main hypothesis of 
the fundamental problem of ballistics, 
reduces to the aerodynamic drag, R ; 

- the weight, ; G

cF- the Coriolis force, .  
Figure 1. Forces effectively applied  

  
Within the Earth-linked frame  (the xyzO11.1 FORCES EFFECTIVELY APPLIED 



trajectory is expressed with respect to Figure 
1), the velocity vector V  can be written as 

kVjViVV zyx ++=  (1) 

So the thrust vector is 
V
V
TT =  (2) 

In general, the absolute value of the thrust 
is function of the flight’s altitude, , and time 
[6, 11]. 

h

The absolute value of the thrust created by 
the rocket engine can be expressed as [5, 6] 

, (3) where  is 
the ground-level thrust (which depends upon 
the time t ),  - the area of the nozzle’s exit 
section,  - the ground-level air pressure, and 

 - the function which indicates the 
relative variation of the air pressure with 

respect to the altitude, , 

( ) ( )[ hBTT 0 −+= 10pSt e ] ( )t0T

eS

0p
( )hB

h ( )
0p

p=hB  (4) 

where p  is pressure at the flying altitude, h . 
For the constant thrust motor (which is 

often encountered) the value of  is given by 

[6] 
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and  are the mass flow rate and the weight 
flow rate of the exhaust gasses in the exit of 
the engine’s nozzle, respectively,  is the 
“effective” speed of the gasses in the nozzle’s 
exit,  - the specific impulse of the engine, 

eQ

eG

efV

spI

0ω  - the total amount of fuel, 2τ  - the 
“ballistic” duration of the “active period” (of 

engine running), while 
g

G
Q e

e = , 
2

0

τ
ω

=eG , 

g
V

I ef
sp =  (6) 

 
1.1.2 THE AERODYNAMIC DRAG 

 
Within the hypotheses mentioned above, 

the aerodynamic drag, R , is oriented along the 
velocity vector V , but it acts in opposite 

direction,  

(7), and the absolute value is 

xCSVR ⋅⋅⋅⋅= 2

2
1 ρ  (8) 

ρ , and the specific weight, The density, 
γ , at the altitude of the flight, , h

( )hH⋅= 0ρρ ργ ⋅= g , (9) where 0ρ,  is the 
density of the air at the ground-level, while 

 is the function which indicates the 
relative variation of air’s density (or specific 
weight) with respect to the altitude, h  [7, 6]. 

( )hH

The symbol  of formula (8) is the 
reference aria, usually the aria of the 

transverse section of the body, 

S

4

2dS ⋅= π , 

(10) where  is the maximum diameter of the 
transverse section of the body (fuselage), and 

 - the dimension-less aerodynamic drag 
coefficient.  

d

xC

Within the adopted hypotheses, at a given 
altitude, 

V
kVjViV

R
V
VRR zyx ++

⋅−=⋅−=

h , the  coefficient is function of 

the Mach number during the flight, 

xC

a
VM = , 

(11) where the speed of sound, a , at the flight 
altitude, RKa = T, is given by h , (12) in 
which  is the ratio of the specific air’s heats, K

405.1==
v

p

C
C

K
Kkg

J
⋅

⋅= 1.287R,  is the 

air’s constant, and  is the air 
temperature at the flying altitude, 

( )hTT =
 [7]. h

Substituting the numerical values, formula 
(12) becomes ( )hTa ⋅= 08.20  (12’). 

Within the same hypothesis, the value of 
 is expressed as a function  

(13). 
( )h,MCC xx =xC

It should be noticed that , which is the 
 function which correspond to the active 

phase of the flight, is different than , 
which is the corresponding function during the 
passive phase. This is due to the fact that, 
during the active phase, the part of the drag 
produced by the vortices which appear at the 
posterior part of the rocket (at the bottom) 
while flying with engine off disappears due to 

xactC

xC

xpasC
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jet of gasses exiting the engine. ( ) ( ) ⎟

⎠
⎞

⎜
⎝
⎛⋅=⋅=

a
VKVaVGVaVF 2,,Consequently, the drag coefficient of the 

rocket can be expressed as 

 (14) where 

 and  are the value of the time at the 
beginning and the end of the active phase, 
respectively, while , (15) 
in which  (also noted ) is the 
posterior drag coefficient (bottom drag) which 
disappears during the active phase, when the 
engine is running. 
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The function , which is 
usually given numerically, is established using 
experimental data and/or calculations. 

( h,MCC xx = )

Calculation in the ballistic practice often 
employ “drag functions” like 
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γπ  (17), where n0γ  is 

the specific weight of the air at ground level in 
“normal conditions” (for the ballistic standard 
atmosphere, according to [6], 

30 206.1
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 is 

the “standard drag coefficient” or the “drag 
law” which corresponds to certain class of 
aerodynamic shapes [5, 6, 8, 11, 13, 15]. 

In the case, the  coefficient is expressed 
as , (18) where i  is the 
shape index (or coefficient) of the rocket and it 
corresponds to the drag law which was chosen 
(usually using experimental data). 

xC
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From formulae (16) and (17), we can 

obtain  (19) 

and 
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⎛ )where function  is a 

dimensional drag coefficient. 
Consequently, the drag, defined by formula 

(18), can be expressed as 
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g⋅= ργwhere  is the specific weight of the 
air at flight altitude. 

( )
nn

H
00 ρ
ρ

γ
γ ==hIf  (22) is the function 

that indicates the variation of the relative 
specific weight of the air with respect to the 
height, then the expression of R , expression 
(21), becomes 

( ) ( )

( ) ( )

( ) ⎟
⎠
⎞

⎜
⎝
⎛⋅⋅⋅⋅

⋅
⋅⋅=

=⋅⋅⋅⋅
⋅
⋅⋅=

=⋅⋅⋅
⋅
⋅⋅=

a
VKVH

g
Si

aVGVH
g
Si

aVFH
g
SiR

23

3

3

104

,104

,104

h

h

h

π

π

π

 (23) 

Taking as reference surface the area of the 
maximum cross-section of rocket’s body, 
formula (10), the expression of the drag, 
formula (23), becomes 
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The function ,  and ( )aVF , ( aVG , ) ⎟
⎠
⎞

⎜
⎝
⎛

a
VK  

are given numerically or in closed form (for 
various laws) [5,6,8,10,4,1], while the shape 
index, , must correspond to the drag law 
which was adopted. 

i

If the function of rocket’s drag coefficient 
is available, then, in equation (23) and (24), 
the shape index must be chosen , while 1=i

⎟
⎠
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⎛

a
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1.1.3 THE WEIGHT 

 
As presented in [9], it is considered that the 

weight, G , is oriented toward the center of the 
Earth (point P , figure 1), so 

( )kgjgigmgmG kyx ⋅+⋅+⋅⋅=⋅= , (26) 
where  is the mass of the rocket; the 
weight’s acceleration vector, 

m
g , at the current 

location  of the rocket in flight [9], is O
( )

( ) 222 zRyx

kzjRyix
g

PO
POgg

p

p

+++

⋅+⋅++⋅
⋅−=⋅−=  (27) 

If the distance PO  between the rocket and 

the Earth’s center is written as 

( ) 222 zyRxrPO ppCPPO +++=≡≡≡ DD , 

(28) then the weight’s acceleration vector 
becomes  
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In point , located at the distance  and 
at the latitude 

O pr
λ  from the center of the Earth, 

the value of  can be obtained from 

Expression (14) [9] (taking into account 
Equation (7) as well). 

Neglecting the small terms and combining 
Equations (14) and (7), we have  
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Now, , where, usually, hRr pp +=
( )μλ,pp RR =  is the distance between the 

center of the Earth and the surface of the 
Earth, along the geocentric vertical which 
passes through O  , while h  is the altitude of 
point , so Formula (30) becomes O

g
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 (31) 

For altitudes  between zero and up to the 
order of magnitude of tenths of kilometers, and 
even higher, Equation (31) becomes [6] 

h
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At the ground level, where , from 
Equation (31) we have 

0=h
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The fraction which appears in the brackets 
in the above equation is practically equal to 1 
for flying altitudes h  of up to several hundred 
kilometers, so in such cases Formula (34) is 
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P R
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Rgg , (35) 

which allows for the calculation of the 
variation of g  with respect to the height. 

In such situations, the series expansion of 
the brackets in Equation (35) (using the 
binomial formula) is 
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VThe velocity  is expressed using the 
components in the Earth-linked frame , 
with respect to which the orbit is expressed as 
well. 
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For heights of the order of magnitude of 
tenths of kilometers (up to 100 km) it can be 
admitted that [ ]GPΩLet be the column matrix containing 

the components of the PΩ  vector on the axes 
of the geocentric Earth linked  frame 
(Figure 1), 
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hgg 21 . (37) 
GGG zyPx

For points located on the Earth surface or 
close to it (at altitudes of the orders of tenths 
of kilometers, up to approximately 100 km) 
calculations can also employ the formula used 
in geodesics [14] 
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(figure 1), the 
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[ ] 1GPΩwhich, for the latitude  and , 
provides . The standard 
value  may be used 
instead, as well. 

045=λ 0=h  column matrix of the 
components of the vector 

2806059.9 −⋅⋅= smg P
PΩ  with respect to 

the former frame is identical to [ ]GPΩ
280665.9 −⋅⋅= smg P . 

[ PΩ ]If Correspondingly,  may also be 
estimated using [3] 

 is the column matrix containing the 
components of the vector Pg
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1.2 THE INERTIAL CORIOLIS FORCE Taking into account Equation (22) [9], 

Expression (44) becomes  
The Coriolis force acting upon the rocket 

which has the velocity 
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Earth, which, in turn, rotates with the angular 
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PΩ  about the  [9] has 
the expression 
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so 

The expression of the Corollas force, (42), 
can be further expended as 
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where 
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 (47) RSubstituting the drag  with the general 
expression, Equation (8), and taking into 
account Equations (27) and (50), the system of 
differential equations of the rocket's trajectory 
becomes: 

Next, taking into account (46), the Coriolis 
force can be expressed as 
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=Ω⋅−Ω⋅⋅= where the traction, T , is determined as shown 
in 1.1, the acceleration of the weight, , can 
be obtained using Equation (14) [9] or (30), 
(31) or (36), the distance to the center of the 
Earth,  is given by Equation (28), while 

, , and , are calculated using 
Equation (46). 
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2. THE SYSTEM OF DIFFERENTIAL 

EQUATIONS OF THE ROCKET’S 
TRAJECTORY 
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Expressing the drag from one of Equations 

(24), which are usually utilized in ballistics, 
and taking into account Equation (46), 
trajectory's differential equations system 
becomes 

The differential equations system of 
rocket's trajectory flying within a resistant 
medium and taking into account Earth's 
rotation and curvature is obtained from vector 
Equation (19) [9] and using Formulae (1), (2), 
(7), (26) and (49). Collecting the results, the 
trajectory with respect to the Earth-linked 

 frame is described by: 
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μλThe latitude  and the longitude  of the 
rocket at a certain instant during the flight are 
obtained using Formulae (36) or (37) and (41) 
[9], while taking into account Expressions 
(34), (39) and (40) [9]. 

The altitude , of the rocket during the 
flight is 

h

PcP Rh −= T  (55) 
where  is the distance between the rocket 
and the center of the Earth [9], while  
which is generally a function 

cPT

PR
( )μλ,PR , is the 

distance from the center of the Earth, , up to 
a point , located on the surface of the Earth, 
at the same latitude 

P
PP

λ  and longitude μ  as the 
rocket. 

Air pressure, p , and air density, ρ  (or the 
specific weight, γ ) , at the altitude  (which 
occur in form (53) of the equations system) are 
obtained from Equations (4) and (9). The 
functions  and , which represent the 
relative variation with altitude of the pressure 
and density, respectively, can be expressed as 

h
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ρ
ρ

ρ
ρ

ρ
ρ

H  (56) 

where  and 0p 0ρ  are the ground-level air 
pressure and density , and np0 n0ρ , are the 
ground-level air pressure and density in 
normal conditions, while the functions 

( )
n

hB
0ρ
ρ=  and ( )

nn

hH
00 γ
γ

ρ
ρ ==  are the 

functions that describe the relative variations 
of the air pressure and density (or specific 
weight), with respect to the altitude within the 
standard atmosphere model which was 
adopted [7, 12, 21]. 

For flight distances (ranges) of 40-50 km 
or even larger it can be admitted that  is a 

constant equal to the spherical homogeneous 
Earth ( ), without affecting 
meaningfully the accuracy of the results. In 
such a case the variation of 

mRP ⋅= 6371110

g  with respect to 
the latitude λ  can also be neglected, however, 
its variation with respect to the altitude h  must 
be taken into account. 

The system of differential equations that 
was obtained represents the mathematical 
model of rocket's trajectory (in a resistant 
medium), which takes into account the daily 
Earth's rotation and Earth's curvature. The 
calculations are further performed via the 
numerical integration of this system. 

The numerical integration of the 
differential equations system begins at the 
moment , when the rocket looses contact 
with the launching device (e.g., the ramp), and 
the elements of the motions at the end of the 
motion of the launching device are used as the 
initial conditions, i.e., 

1tt =

( ) 111 cosθVVV xx ==1tt = , , 
( ) 111

cosθVVV yy == , , , , 

 (57) 

0=zV y0=x 0=

0=x
where  and 1V 1θ  are the speed while leaving 
the launcher and the launching angle, 
respectively. 

During the passive phase of the flight, in 
other words after the end running time of the 
rocket engine, for  (where  is the 
extent of the active phase), the traction term in 
the equations of motion have to be voided 
(

2tt > 2t

0=T ). The elements of the motion (state 
variables as well as other parameters) at the 
moment  have to be recorded and the 
integration further proceeds using these 
( ) data as initial conditions. 

2tt =

2tt =
The slope θ  of the tangent to the trajectory 

with respect to the horizontal plane at the 
launching position,  is given by the 
expression 

zxO1
PR
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VV

V
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+
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The equations of motion are usually 
integrated until a predetermined altitude, h , is 
reached on the descending side of the 
trajectory (when 0<θ ). 

Calculation of the range requires 
integrating until  on the descending part 
of the trajectory. 

0=h

Adequate choice of the initial conditions 
and of the end conditions allows the ordinary 
differential equations system obtained herein 
to be used for calculation of the active-reactive 
projectile's trajectory as well. So, if  is the 
moment when the projectile exits the barrel,  
- the start of the rocket engine and  
corresponds to the end of the engine run, the 
ordinary differential equations system (with 
the appropriately selected boundary 
conditions) can be integrated choosing  
for the time-frame , next setting, , 
for the time-frame [  and, finally , 
again for , when the engine is no longer 
running. 

0t

1t

2t

0=T
[ 10 , tt ]

]
0≠T

21 , tt 0=T

2tt >

The mathematical model presented in this 
paper can also be used (with the adequate 
adjustments) for calculating the trajectory of 
an aerospace vehicle within the dense 
atmosphere. 
 

III. CONCLUSION 
 

The mathematical model obtained is 
rendered in forms utilized in ballistics. This 
system of equations can also be used for the 
calculation of the trajectory of different 
rockets, active-reactive projectile, and also, 
with some adjustments, for the calculation of 
the trajectories of an aerospace vehicle. 

For distances of 20-25 km, the inertial 
Coriolis force introduced by the Earth's 
rotation can be neglected. For bigger distances, 
the Coriolis force must be also considered. The 
variation of g  with respect to the altitude  
must be taken into account. 

h

For flight distances (ranges) of 40-50 km 
or even larger, it can be admitted that  is a 
constant equal to the spherical homogeneous 

Earth ( ), without affecting, 
meaningfully, the accuracy of the results. 

mRP ⋅= 6371110

For distances over 50-60 km, the variation 
of  with respect to the latitude g λ  and 
altitude h  must be taken into account. 
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