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Abstract: The LQ (Linear Quadratic) based design methods are powerful tools for control system 
controllers' synthesis and they are applied since many decades for control system design purposes. The 
model-based LQ methods may be divided into two different methods. First of them is the LQR (Linear 
Quadratic Regulator) method. This design method supposes available for the measurements state 
variables of the control system. This problem is the so-called "full state feedback" problem. The second 
LQ design method is the LQG (Linear Quadratic Gaussian) one. This method allows consideration of the 
influence of internal and external stochastic disturbances affecting motion of the aircraft. The purpose of 
the author is to summarize the theoretical backgrounds of design methods listed above and to show 
design examples for solution of LQR and LQG model-based design methods applied to synthesize 
controller for the Unmanned Aerial Vehicle (UAV) system. 
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1. INTRODUCTION 

LQ based design methods are widely 
applied for optimal control of aircraft. The 
LQR method allows determining optimal 
control law minimizing pre-defined integral 
performance criteria. The LQG design method 
allows consideration of simultaneous external 
and internal disturbances affecting motion of 
the aircraft. 

Modern control systems are analyzed in 
[1, 3, 4, 5, 6, 10, 11, 13, 14]. LQR design 
problem in the focus of attention of references 
of [1, 2, 3, 4, 10, 11, 13, 14]. The LQG design 
method is outlined with applications in [5, 6, 
13]. A special attention must be paid to 
applications of the proposed LQR and LQG 
methods applied in design of the automatic 
flight control systems [8, 9]. Pokorádi in [12] 
gave full-scale description of derivation of 
dynamic systems’ mathematical models, and 
signals applied for system analysis purposes. 

Computer aided analysis and design of the 
dynamical systems are supported by computer 

packages like MATLAB® supplemented with 
appropriate toolboxes applied at our 
Department of Military Robotics, at Zrínyi 
Miklós National Defense University [2, 7]. 

2. THE LQR DESIGN PROBLEM 
FORMULATION  

Dynamics of the LTI system may be 
defined using the following state and output 
equations [1, 3, 4, 5, 6, 8, 9, 11]: 

= + = +&x Ax Bu  y Cx Du, . (2.1) 
The block diagram of the closed loop 

system – for D=0 – built by equations (2.1) 
may be seen in Figure 1. 

 
Figure 1. Block Diagram of the Control 

System 
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Optimal control law may be determined 
evaluating the following integral performance 
criteria [3, 4, 5, 8, 10, 13, 14]: 

0

1  
2

J dt Min
∞⎛ ⎞= ⎜ ⎟
⎝ ⎠
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T Tu Rux Qx

 

→ . (2.2) 

In cost function of equation (2.2) main 
design parameters are weights of Q≥0 and 
weights of R>0. If weighting matrix Q is very 
large relative to weighting matrix R one may 
get a closed loop system response with large 
overshoots. If weighting matrix R is chosen to 
be very large relative to Q control system has 
smaller actuators, electric motors, amplifier 
gains and other devices. During controller 
synthesis weighting matrices may be derived 
using the so-called inverse square rule. 

The LQ optimal control problem may be 
solved using wide variety of techniques. Let us 
consider method of Euler-Lagrange equations, 
Hamilton-Jacobi-Bellman theory and 
Pontriagin's minimum principle. Firstly, let us 
define the so-called Hamiltonian matrix to as 
follows below [1, 2, 3, 4, 8, 11, 13, 14]: 

( ) ( )1( , , )
2

tλ = + + λ +T T T T TH x x Qx u Ru Ax Bu ,(2.3) 

where λ is the Lagrange multiplier. 
It is well-known that Pontriagin’s 

minimum principle states that optimal state 
and control trajectories must satisfy the 
following equations [10, 11, 13, 14]: 
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∂ ∂ ∂
= = −λ
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x u
&& 0=

=
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. (2.4) 

Using rules for differentiation of matrices 
and vectors equations (2.4) may be rewritten in 
the following manner 

o= + (0) =&x Ax Bu  x x, , (2.5) 

,  ( ) 0T−λ = + λ =λTQx A& , (2.6) 
o −= − λ1 Tu R B . (2.7) 

Equation (2.7) defines the optimal control 
law. The coupled equations (2.5), (2.6) and 
(2.7) may be regarded as the ‘two point 
boundary value problem’ (TPBWP). 
Substituting equation of control law (2.7) into 
state equation (2.5) results in following 
formula [1, 2, 3, 4, 8, 11, 13, 14]: 

ˆ
−⎡ ⎤−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥λ λ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦− −⎣ ⎦

1 T

T

x A BR B x x
H

Q A

&
& . (2.8) 

Let us make the following substitution in 
equation (2.8): 

λ=Px, (2.9) 
where P is the so-called cost matrix. 
Differentiating equation (2.9) with respect 

to time, and considering equations (2.5) and 
(2.7) following equation may be derived: 

d d d d
dt dt dt dt

−

λ
= + = +

− = − −1 T T

P x Px P x PAx

PBR B Px Qx A Px

− . (2.10) 

The sufficient condition for optimal control 
is that P must satisfy the following Ricatti 
differential equation [11, 13, 14]: 

 (T) = 0d
dt

−− = + + −T 1 TP A P PA Q PBR B P, P  (2.11) 

Solution of the optimal controller synthesis 
problem using Ricatti-equation in control 
theory is regarded as the finite time problem. 
This solution results in the linear time varying 
controller of the feedback [1, 2, 3, 4]: 

o ( ) ( ) ( ),  ( ) ( )t t t t −= − = 1 Tu K x K R B P t . (2.12) 
Equation (2.11) is a nonlinear, first order 

differential equation, which has to be solved 
backwards in time [1, 2, 3, 4]. During solution 
of the infinite time LQR problem it is 
considered that T→∞ . 

It is obvious that under mild conditions 
cost matrix P may be considered as constant 
and, solution of Ricatti-equation results in the 
asymptotically stable closed loop control 
system. 

In this particular case, equation (2.11) may 
be rewritten as: 

= 0−+ + −TA P PA Q PBR B P1 T

P

, (2.13) 
And, optimal control vector may be 

derived as: 
o (t) ( ),  t −= − = 1 Tu Kx K R B . (2.14) 

Equation (2.13) is known as algebraic 
Ricatti equation (ARE). Conditions defined by 
equations (2.13) and (2.14) are necessary and 
sufficient for existence of the optimal 
controller, which will asymptotically stabilize 
the control system. 

The steps of optimal control law synthesis 
includes following two steps: 

1, solution of the ARE - equation (2.13) - 
in order to find the constant cost matrix P, 

2, substituting cost matrix P into equation 
(2.14). 
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The resulting feedback gain matrix K is an 

optimal for the given set of weightings of 
those matrices of Q and R of the performance 
integral criteria [1, 2, 3, 4, 8, 11, 13, 14]. 

3. OPTIMAL CONTROL LAW 
SYNTHESIS USING LQG DESIGN 

METHOD 

The LQ based control law synthesis 
problem is solved in the time domain (LQR 
problem) and in the frequency domain (LQG 
problem). The LQR problem is for the 
determination of the optimal control law when 
all state variables are available for 
measurement. This case is rarely may be met 
in the practice. The more realistic case is the 
LQG problem, which is representation of the 
output feedback problem. 

During solution of the LQG controller 
synthesis problem there is considered the 
disturbed state-space model of the plant as 
given below [1, 2, 3]: 

,  == + + +x Ax Bu w y Cx& Γ υ  (3.1) 
In equation (3.1), x is state vector, u is the 

control vector, y is the vector of measured 
outputs,  is the random plant disturbance, 
and  is the random sensor noise. Both 
disturbances are uncorrelated, Gaussian 
stationary random processes with zero-mean 
values. Finally, Γ is the input matrix for the 
external disturbance of . Covariances of the 
random processes are listed below [5, 6, 13]: 
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Figure 2. Block Diagram of the Dynamic 

System 
Block diagram of the dynamic system 

defined by equation (3.1) may be seen in Fig. 
2. 

From Figure 1 the optimal control law – for 
r = 0 - may be derived as follows below: 

= −u Kx . (3.3) 
The optimal state feedback gain matrix is 

as given below 
1 T−=K R B P . (3.4) 

The positive definite cost` matrix P may be 
found solving the algebraic Ricatti-equation 
[1, 2, 3, 4, 7, 8, 11, 13, 14]: 

T  1 T 0−+ − +A P PA PBR B P Q = . (3.5) 
The synthesis of the LQG controller may 

be achieved using the so-called separation 
principle. 

The derived control law will minimize the 
following average integral ‘cost’ function, i.e. 

( )T

0
lim

T
T

T
J E dt

→∞

⎧⎪= +⎨
⎪ ⎪⎩ ⎭
∫ x Qx u R u Min

⎫⎪→⎬ . (3.6) 

Using the separation principle the control 
law synthesis problem may be solved in two 
separate stages. 

Firstly, the so-called deterministic cost is 
minimized solving the reduced-matrix Ricatti 
equation. The Kalman-filter state equation 
may be derived as given below [1, 2, 3, 4, 7, 8, 
11, 13, 14]: 

( )ˆ ˆ ˆ= + + −x Ax Bu L y Cx& . (3.7) 
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Figure 3. Block Diagram of the State 

Observer 
The block diagram of the state observer – 

Kalman-filter – derived by equation (3.7) may 
be seen in Figure 3. 

The input of the state observer are u and y, 
the output is the estimate . The static gain of 
the optimal state observer L may be found by 
equation given below 

x̂

T -1
o=L C RΣ . (3.8) 

In equation (3.8) L is the Kalman-filter 
static gain, Σ is a positive definite cost matrix 
and, is the set of weighting matrices 
of the state and the input vectors, respectively. 

oo Q , R

The cost matrix Σ may be derived solving 
the following equation [2, 3, 4, 8, 11, 13, 14]: 

T T -1 T
o o 0−A A C R C QΣ + Σ Σ Σ + Γ Γ = . (3.9) 

The structure of the LQG compensator may 
be derived as the series connection of the 
Kalman-filter with the state feedback gain 
matrix. 

 
The block diagram of control system may 

be seen in Figure 4. 

 
Figure 4. The Structure of the LQG 

Compensator 
 
This representation of the control system 

may be applied if the linear plant model is the 
reliable one, and there are well-defined 
stochastic processes to be considered. In this 
particular case the concern is to minimize the 
cost function defined by equation (3.6). 

During solution of the LQG controller 
synthesis problem weighting matrices Q and R 
– used for Linear Quadratic Regulator design 
stage – and weighting matrices Qo and Ro – 
used for Linear Quadratic Estimator design 
phase are applied as tuning parameters [1, 2, 3, 
4, 7, 8, 9, 10, 11, 13, 14]. 

4. CONCLUSIONS, FUTURE WORK 

Optimal control law synthesis technique is 
widely applied in design of dynamic systems 
controllers. The design process is supported by 
large scale references, and also many 
application examples are available. 

The LQG method is more realistic than the 
LQR one. These methods may be applied for 
preliminary design of the automatic flight 
control systems. The model-based design 
supposes existence of the identified model of 
the aircraft. 

Methods are based on preliminary settings, 
and further heuristic settling of the weights in 
integral criteria defined by equation (2.2). 

Application of these methods predicts high 
level of theoretical knowledge, and 
experiences in working with heuristic setting 
of weights in solution of optimal control 
systems. 

The paper is proposed to use in design of 
optimal dynamic systems, namely for design 
of the automatic flight control systems of the 
UAV. 
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