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Abstract: The phase transitions in solid materials (called solid-solid transformations) are connected with 
the thermo dynamical processes with hysteresis, leading to the dissipative models. Obvious, the liquid-
solid transitions are governed by the reversible processes (without dissipation of internal energy). The 
analysis of a loop of hysteresis reveals some feature about elastic-plastic properties, like the hardening. 
We emphasize some retrospective results along a temperature scale. Some considerations about the phase 
transitions are made for a 0,8 %C steel, a cast ingot steel at 15000C subject to the prescribed cooling 
conditions, supposing a non isotherm process. Along a large interval of temperature the steel changes 
some typical  interne structures: volume - centered cubic, face -centered cubic, again volume- centered 
cubic, according to the phases followed by the steel in a cooling process: liquid - δ , austenite, perlite, 
martensite, so on.  
 The microstructure is dominated by the dendrite structure, as a result between the two intimate 
phenomena which arise during the cooling process: the nucleation of the new phase and crystal growing 
of the dendrite network, the result of this competition is a dendrite structure.  For a local study we extract 
an elementary representative volume (ver), to whom we can attribute some thermo-dynamical or 
geometrical parameters. During manufacturing process it is acted by a sequence of transformations 
which define the particular constitutive laws underlying by the ver in phase transitions of the material. 
The mathematical models of phase transitions are described by the nonlinear problems of the heating 
diffusion (the cooling of the molten metal), by the mass and heat transfer problem (solidification), by the 
elastic-plastic deformation with phase transition into the solid materials. 

  
Mathematics Subject Classification 2010: 74-XX, 74A15, 65-XX. 
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1. INTRODUCTION 
2.  
For a 0,8%C steel, we make a study on 

cast ingot steel at 15000C in prescribed 
cooling conditions, supposing a non isotherm 
process. During this process, along a large 
interval of temperature the steel changes some 
typical interne structures, according to the 
phases followed by the steel in a cooling 
process. The microstructure reveals a dendrite 
design, so we have in view a schema from 
figure 1.  

 
Figure l. The cooling structure diagram of 

the steel 
 The microstructure is dominated by the 
dendrite structure, as a result between the two 
intimate phenomena which arise during the 
cooling process: the nucleation of a new phase 
and crystal growing. The mathematical 
literature have tried to realize an agreement 
between a dendrite structure of the metal and a 
lattice structure of the processes and implicitly 
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of the elementary domains set, as an 
ingredient which appears in the mixture of an 
intermediate zone. 
 For a local study we extract an 
elementary representative volume (erv), to 
whom we can attribute some thermo- 
dynamical or geometrical parameters, it is 
acted by a suite of transformation processes, 
which define the particular constitutive laws 
underlying phase transitions of the erv. The 
mathematical models of phase transitions are 
described by the nonlinear problems of the 
heating diffusion (the cooling of the molten 
metal), by the mass and heat transfer problem 
(solidification), by the elastic-plastic 
deformation with phase transition into the 
solid materials. 

Obviously, the liquid-solid transitions 
are governed by the reversible processes 
(without dissipation of internal energy). The 
phase transitions in solid materials (so called 
solid-solid transforma-tions) are connected to 
the thermo-dynamical processes with 
hysteresis, leading to the dissipative models. 
The analysis of a loop of hysteresis reveals 
some features about elastic-plastic properties 
of the materials, like hardening.  
 

2. ENERGETIC ACCUMULATION DURING 
THE TRANSITION PROCESSES 
We have considered a metal melting in 

liquid- δ  phase, as a fluid and at the same 
time, as a union of elementary volumes, each 
of them submitted at the thermal process; the 
thermal change develops by the loss of heat at 
different hotness. 

The mechanism of heat changing 
corresponding to a scale of temperatures (a 
cooling range) can be explained by the heat 
accumulation concept (dissipation of heating) 
associated to one process; this concept is 
viewed as a measure of the accumulated heat 
(lost heat). 

The most liquid - δ - austenite 
transitions are described by the free boundary 
value problems of Stefan type in different 
studies about the thermodynamics of 
dissipative materials. Here, the behavior of the 
interface characteristics reveals the phase 
growing. The model equations are compatible 
with the principles of thermo-dynamics, see C. 

Truesdell, 1984, M. E. Gurtin, 1983, 1990, R. 
N. Hills, D. E. Loper & M. E. Gurtin, 1989, S. 
Luckhaus & L. Modica, 1989. 

We intend to introduce an abstract shot 
presentation of an adequate formalism  
about these transformations. Denote by U a 
family of the elementary representative 
volumes, ∈V  U is an erv and P a family of 
the transition processes which are submitted 
the systems of  U. We take as a subfamily of P 
the set of conservative processes (cyclic 

processes), denoted P . Our aim is to define a 
lattice structure associated to the material, 
viewed as molten, so we form a vector 
bundles (U, P,

c

σ ), where :σ  U P is a 

surjective application, the image  
is a fiber of the all processes compatible with 
the erv V, 

→

( ) ( )VVP <=σ

( ) ( ) cPVPVcP ∩=  and, it is also the 
fiber of the cyclic processes. We will 
introduce a union of the erv systems and also a 
union of the processes which are compatible 
with them: for K U⊂ × U define  K→  U, :⊕
( ) ∈⊕→ 2121, KKKK U. 
Denote by (H, ≤ ) a total ordered set, called the 
variety of hotness applied to the family U, 
which is isomorphic to ; for each hotness 
we associate a temperature. Any 
homeomorphism (H,R) is a 
temperature scale, we denote by G  the scale 
family of positive temperatures, 
G

( ≤,R )

Homh∈

+

+ ( ) [ ){ }+∞→∈= ,0:/, HRHHom ρρ . 

For a erv-system , which lies in 
the process P, the absorption or the emission 
phenomenon can be characterized by the 

distributions , : P  G . 

( )P1−σ

+C −C → +

Definition 2.1. The heat accumulation 
of the erv along the transformation P, from the 
fiber ( )( )PP 1−σ , is the quantity ( ) =PC  

( )−+ PC  ( )PC − . 
We will associate to the union 

operation ⊕  another application π , named a 
projection over the processes compatible with 
the union, ( )→⊕ KP:π  P× P, π  is 
injective, here ( )KPP ⊕=⊕  is the family of the 
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united processes associated to united systems 
(enchained systems) . K⊕

Definition 2.2. We name the reference 
hotness threshold  H, such that ∈II ,

{ } IIhHh h=≤∈ :/χ , where Aχ  is the 
characteristic function of the set A, so 

. ( )
⎩
⎨
⎧

∉
∈

=
Ax
Ax

xA ,0
,1

χ

 
 
Figure 2. An example of the accumulation 

function 
In all that follows, the set of non 

decreasing, right continuous functions will be 
of a great importance, as the example from the 

figure 2, , for which there 

exist ,  such that 

:f ( ) ( ∞→∞ ,0,0 )
Rba ff ∈, ,ff ba ≤

( )
⎩
⎨
⎧

≥
<

=
f

f

bxf
ax

xf
,
,0

. Based on the positive and 

continuous functions we can introduce the 
family of bounded variation functions 
F −+ −= FF  . 

Definition 2.3. We name an integral 
accumulation with density  F, denoted ∈f

( ) ( )∫
∞= 0

1 xdf
x

fAc , the numerical value given 

by this Stieltjes-Riemann integral of the ratio 

x
1

 according to f. 

Remark 2.1. If the density function f 
lies in the distributional space , then [ )( +∞∞ ,00C )

( ) ( )∫
∞

=
0 2

1 dxxf
x

fAc . 

Considering a united process 
consisting in elementary processes compatible 
with the family U of erv-systems from the 
intermediate zone of the material, denoted 

⊕∈ PP , which is endowed with a heat 
accumulation ( )PC  (emitted, or absorbed 

quantity), ( ) ( ) (PCPCPC −+ −= ) and a 
temperature scale ∈ρ G , we perform a heat 

distribution of the system  along the 
process P, using a temperature scale 

+

( )P1−σ
ρ  as 

( ) ( ) ∈= −1,. ρρ oPCPC  F. We give  

Definition 2.4. Let  P , :A R→

( ) ( )( ),.PCAPA c ρ= , ∈ρ G , to be the heat 

accumulation of the erv-system 

+

( )P1−σ , 
along the process P, in the scale ρ. 

3. THE ANALYSIS OF THE MOLTEN 
METAL (LIQUIDδ ) 

From the point of view of our research, 
we have investigated the heat change into the 
molten metal, assimilating the fluid with a 
union of erv-systems, but the change with the 
exterior medium have been approached by a 
suite of small changes at different hotness. We 
recall the idea of Serrin (see C. Truesdell, 
1984) regarding the accumulation along the 
process, corresponding to a temperature scale 
and we will introduce a classical capacity, 
which is the same as the measure of heating 
change from the material. Suppose that the 
quantity 

537



( )( ) ( )( ) ( )+= − ttCtq 2
1: ααϕα &o ( )( ) 1

1 ααϕ &o tp − ( )t  
can be considered as a specific heat of the 
fluid (molten alloy) and 

( ) [ ) ( ){ TttTI <∞∈= 2/,0, }αα  

is called the temporal level imposed by the 
temperature T. 

Supposing the molten as an ideal fluid 
satisfying the law 
( ) (LRVLVp )ϕ=, , for all ∈ϕ G , 

H, , we derive the central result. 
+

∈L +∈RV
Theorem 3.1. For any curve C∈α , 

identified with the composed process ⊕∈Piα , 
for any ( RHHom ,∈ )ϕ  a temperature scale, 
the integral accumulation ( )αϕ iA  can be 

expressed by ( )αϕ iA
( )( )
( )∫=

1

0 2
dt

t
tq

α
α

 (see also 

the classical expression of the entropy 

∫= α T
dqS ) 

Remark 3.2. At this stage we can 
define the particular transformations of a erv-
system: if  , for all ( ) Tt =2α [ ]1,0∈t , then 

C∈α  is an isotherm curve of T level along 

the αi  process for the erv-system ( )∈− ασ i1  
U; if any part [ ]( 1,0P∈ )τ  satisfies the relation 

, then ( )( ) 0=∫τ α dttq C∈α  is an adiabatic 
curve along the αi  process for the erv-system 

; if ( ) Ui ∈− ασ 1 ( ) (10 )αα = , then α  
corresponds to a cyclic process. 

Corollary 3.1. Let C∈α  be a curve of 

the transformation, such as ∈αi  P c , 
then , i.e. any cyclic process is 
realized without heat accumulation. 

( ) 0=αϕ iA

In what follows, the accumulation 
function permits us an irreversible or a 
reversible treatment. 

3.1. The austenitic transform-
transition from liquid state δ  to solid 
(austenite) 

We make some thermo-dynamic 
considerations about the transition process of 
the erv-system, where the heat diffusion is 

made by the thermal conduction, a non 
isotherm process governed by a classical 
problem of Stefan type. Consider that the erv-
system occupies a bounded measurable 
domain B in the physical space, denoting by 

 the sub-domain occupied by the solid 
phase and the complementary sub-domain by 

and 

1B

2B 21 BBS ∩=  is the separation 
interface, see figure 3. 

 For a transition hotness  we 
associate a reference temperature 

Mh

( )MhMT ϕ= , called the solidification 
temperature; later we use a reduced 
temperature 

 ( ) ( )MM hhTT ϕϕθ −=−= . 
 

 
 

Figure 3. Sketch of an erv 
 
The erv-system has an internal energy 

during the phase transition as an absolute 
continuous measure (obviously a distribution) 
according to the Jordan measure on the R3-
space. The heat transfer is realized between 
connected erv-systems if there exists one 
difference of hotness between some two 
systems and can be characterized by the q heat 

flux vector. Denote by 0θ  the reduced 
equilibrium temperature of the two phases and 
we take ( ) ( 0102 )θεθε −=l  the difference of 
energy at the phase transition, named the 
solidification latent heat.  

Sometimes the temperature can 
decrease under the value 0θ  and the 
transformation from the liquid to solid can’t 
take place, one says that the system presents 
the super-thermal state, which is named a sub-
cooling of the interface. The existence of the 
super-thermal zone leads us to impose the 
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presence of the mushy zone, which is a 
mixture of phases in equilibrium. Analytical 
characterization of the mushy zone needs the 
introduction of the fraction solid 

function :χ B , +→ R ( ) ( )
( )⎩

⎨
⎧

∉
∈

=
tBx
tBx

xt
1

1

,0
,1

,χ , it 

can be understood as a measure of nucleation 
phenomenon near the separation interface. In 
this way a thin free interface (as a surface of 
null volume) must be replaced by an entire 
mixture zone, where the germs of the new 
phase arise and where their growing takes 
place. We adopt the new expressions for the 
internal energy and heat flux according to the 
transition process with nucleation,  
( ) ( ) ( ) ( )θεχθχεχθε 21 1, −+= ,
( ) ( ) −∇−=∇ θθχχθθ 1,, Kq  ( ) ( ) θθχ ∇− 21 K , 

for one erv-system. We have supposed that the 
erv is submitted to a transition governed by 
the Fourier law; here K is the thermal 
conductibility of the material. Thus the states 
space of the erv is 

( ) ( )( ){ }++ ×′∈×∈=Σ RBDRBC χθχθ ,/, 0

and ε ,  are scalar function and vector 

function, respectively on ,  is the 
distributional space on B. 

q

Σ ( )BD′

 Some results of the phase transitions 
applied on freezing water, on steel 
solidification, including super thermal states 
have been obtained by G. Caginalp, 1986, A. 
Visintin, 1986, 1987, G. Caginalp & J. T. Lin, 
1987, M. E. Gurtin, 1986, 1987, J. Chadam, S. 
D. Howison & P. Ortoleva, 1987. 

An important parameter characterizing 
the state of the erv, more used in the treatment 
of the Stefan problem, also counting the super-
thermal states, is the integral accumulation of 
Clausius type, named the global entropy of the 
erv, denoted , whose density according to 

Jordan measure on Euclidian space  is the 
function 

νA

3R
( )xt,η , the density of entropy. 

The first law of thermodynamics for an 
erv – system consists in the equilibrium of 
total energy, which is 

( ){ } ( )( ) +−=′ ∫∫ ervFrerv ndxtqdxxt σε ,,  
( )∫erv dxxtr , ,  

where the r function represents the heat 
supply, and it will count as an external energy. 

The second law of thermodynamics 
explains the increase of the entropy which 
accompanies the arising of the new free 
interface. Here we have the Clausius-Duhem 
inequality 

( ){ } ( )
( )( ) +≥′ ∫∫ ervFrerv d

xt
nxtqdxxt σ

θ
η

,
,,  

( )
( )∫erv dx

xt
xtr

,
,

θ
. 

 We suppose that the θ  function is 
continuous on the domain B, but all the other 
functions: ηε ,,, Kq  have some 
discontinuities across the interface. Despite 
this difficulty we can apply the Gauss-
Ostrogradski Theorem and we obtain the local 
relations of equilibrium for the erv-system 
(e)  ( ) ( ) ( xtrxtdivqxt ,,, + )−=ε& , almost 
everywhere ( ) BRxt ×+∈, , and the Clausius-
Duhem inequality 

(i) ( ) ( )
( )

( )
( )xt

xtr
xt
xtqdivxt

,
,

,
,,

θθ
η +−≥& , a.e. 

( ) BRxt ×+∈, . 
Assumption 3.1. The erv-system is 

endowed with an internal energy ε , which is 
taken as primitive variable characterizing the 
physical state, consequently all other 

parameters depend upon ε . Let ( )εθθ
~

= , 
( )εηη ~= , ( ) θθ ∇−= Kq

~
 be dependent variables, 
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where θ~ , η~ , K~ ( )RD′∈ , and K~  is a positively 

defined matrix on . 3R
We suppose that the hotness increases, 

then the temperature of the erv-system 
increases too and consequently the internal 
energy grows strictly monotone.  We have 
considered the temperature continuous on B, 

therefore θ
~

 is an invertible function. We 
eliminate the r function between the two 
relations (e) and (i) and we obtain the 
inequality 

θθ
θ

θ
θθ

εη gradKgradq ..11
22 −=∇≥−

&
& 0≥  

and it underlines another nonlinear 
characteristic of the erv-system 
( )

( )
( ) ( )εθεθ

εθ
εγ

~~
2~

1
∇∇= K , named the local 

productivity of entropy accumulated by the 
erv-system in a liquid-solid transition, 
otherwise the last inequality becomes 
( ) ( ) 1

~
.~ ≥′ εθεη . 

 Definition 3.1.  During a transition, the 
process P whose characteristics  and θ

~
η~  

satisfy the relation , it is a 
dissipative process and the transition is 
irreversible; if 

( ) ( ) 1
~~ ≥′ εθεη

( ) ( ) 1
~~ =′ εθεη holds then the 

process is conservative and the transition is 
named a reversible transition. 
 The last two relations ensure the 
inequality ( ) 0~ >′ εη , that is the entropy of the 
erv-system is a strictly increasing function 
with respect to internal energy. In order to 
preserve the estimation of the mechanical 
work consumed means only to assume that 
dissipation cannot increase the work done. 
 Assumption 3.2. The density of 
entropy η  hasn’t positive second derivative, 
i.e. , meaning that ( ) 0<′′ εη η  is a concave 
function. 
 For a reversible transition a simple 
calculus assure  

( ) ( )
( )
( )

01
2 >

′

′′
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′

=′
εη
εη

εηε
εθ

d
d , 

then, the θ  function is an invertible function 
on ε , such that ( )θεε ~= . I have referred to 

lack of dissipation for ervs capable to follow 
only reversible processes. 

Definition 3.2. The variation of the ε~  
function according to the temperature, that is 
the quantity ( ) ( )θεθ ′= ~C , which is named the 
specific heat of the erv-system. 

 Obviously, ( ) 0>θC , because ε~  is a 
monotone function.  

3.2. Entropic analysis of a phase 
transition 

We take again the idea of the two 
phases in a erv-system, the heat conduction 
produce an irreversible transition along the 
manifestation of a process P, also counting the 
monotony of the entropy, that in a ( )ηε ,  
diagram corresponding to figure 4, the 
concavity of the function 

⎩
⎨
⎧

=
22

11

,~
,~

~
Bin
Bin

η
η

η  

near the critical value  of the energy, having 

the common slope at 

∗ε

1ε  for the function 1
~η , 

at  for the function 2ε 2
~η . 

 
 
Figure 4. Convexification of  the entropy 
 

Using the definition of the specific heat, the 
equilibrium equation becomes  
 ( ) ( )( ) rKdivC +∇= θθθθ

~& . 
But the liquid δ -austenite transition is a 
reversible one, thus  
( ) ( ) ( ) ( ) 022

2211
11

~
~

1
~

1~
θεθ

εηεη
εθ ==== , 

considered as a transition value of the 
temperature, which generates a convex hull of 
the entropy function and at the same time 
gives the initial reduced temperature of the 
liquid-solid transition. We generalize the 
notion of latent heat adding a new function 

.  12 εε −=L
Later on the free energy of the erv-

system will be very useful, presented as a 
discontinuous function, having a jump across 
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the separate interface, revealed in figure 5, 

.We connect this notion with 
the super-thermal states of the erv-system. 
First, we have 

( ) ( )εηθεε 0−=Ψ

( ) ( )10111
~~ εηθεε −=Ψ ,  

( ) ( )20222
~~ εηθεε −=Ψ  

the two values corresponding to the minimum 
of the Gibbs potentials, passing to the small 
variations which lead us to the equality 

( ) ( )22
~

11
~

εε Ψ=Ψ +L, indeed, 
( ) ( ) ( ) ( )( ≈−−−=Ψ−Ψ 22 )~

11
~

0212211
~

εηεηθεεεε  
(using a Lagrange formula for a smooth real 
function) =L+ ( )Lεηθ ′~

0 = ( )( εηθ ′+ )~
01L , where 

( 2,1 εεε ∈ ) , because the slope is the same on 

the tangent line, ( ) ( ) ( ) 0~~~
2211 =′=′=′ εηεηεη , 

therefore the relation holds. 

 
Figure 5. Variation of free energy 

 
 The particular case of the phase 

transition at the constant energy  appears a 
discrepancy between the individual phase 
energies, which assures a super thermal state 
of the erv-system. The domain 

∗ε

( ) ( ){ }+
∗ ∈<<∈ RtxtxtBx ,,,/ 2εεε  constitute 

the part of the mushy zone stated in sub-
cooling of interface and 

( ) ( ){ }+∗ ∈<<∈ RtxtxtBx ,,,/ 1 εεε  another 
part of the mushy zone stated in super- 
heating, the two parts are non equilibrium 
regions of the erv-system.  
 We affirm that any transition into the 

erv at constant energy  governs the entropy 
production described by a positive quantity 

∗ε

( ) 0>θγ , therefore the material presents the 
super thermal regions under small variations 
of some other characteristics. 
 Remark 3.1. Some features about the 
shape of the free energy can be viewed, doing 
simple calculus,  

( ) ( ) ( ) ( ) ( )εηεθεηεθε ′−′−=Ψ′ ~~~~
1

~  (the erv-system is 
submitted at reversible transformation) = 

( ) ( )εηεθ ~~
′− , but the function  is an 

increasing function on and for 
θ
~

+R 0~ <η , Ψ~  it 
is increasing, for 0~ >η , Ψ

~  is a decreasing 
function, a fact that justifies the variation 
given in diagram ( )Ψ,η . 

3.3 Integral and entropy solution for a 
thermal conservation law 

A partial differential equation of the 
form +tu   ( ) fudivF = , in  is called 
a conservation law with unknown u and the 
flux function 

( +∞× ,0nR )

( )nFFFF ,...,, 21= . We can 
write this equation into non divergence form 

( ) uubut ∇+ , for . We will focus on 
the initial homogeneous value problem 

Fb ′=

(CL) ( ) 0=+ udivFut , in ( )+∞× ,0nR , 
gu = on { }0=× tRn , 

where   is the initial value of u. Our 
aim is to use the variational method in treating 
of this problem. First of all we introduce  

locLg 1∈

 Definition 3.3. We say that ∈u   is 
an integral solution of (CL) if there exists 

locL1

( ){ }∫ ∫
∞ ∇+0 nR t dxdtuuFuv + , for 

all , where  is the space of real 
valued function with compact support. 

( ) 00., =∫ nR dxgv

1
cCv∈ 1

cC

 Now we introduce a thermo- 
dynamical notion 
 Definition 3.4. Let , be a  real 
valued function and a vector valued function, 
respectively, we call  an entropy/ 
entropy flux pair for the conservation law 

Φ Ψ

( ΨΦ, )
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(CL) provided is convex and satisfies 
. 
Φ Ψ

Φ=Ψ′ bgrad
 We consider an approach problem: for 

0>ε  find  satisfying the non 
homogeneous problem  . 
Compute  

locLu 1∈ε

( )εε udivFu t + εε uΛ=

( ) ( )( ) ( ) ( ) εεεεε
ε uuuuuu tt ∇Ψ′+Φ′=Ψ∇+Φ  
( ) ( ){ }+Δ+∇−Φ′= εεε ε uuubu  ( ) εε uu ∇Ψ′ = 
( ) εεε uu ΔΦ′= ( )( )−∇Φ′∇= εεε uu  

( ) 2
εεε uu ∇Φ′′  ( Φ is a convex function, 

) 0≤Φ ′′ ( )( )εεε uu ∇Φ′∇≤ . 
Taking into account some regularity 
conditions and convergent results we obtain 

( ) ( ) 0≤Ψ∇+Φ uu
dt
d

 . 

 Definition 3.4. We say that u is an 
entropy solution of the conservation law 
providing that ( ) ( ) 0≤Ψ∇+Φ uu

dt
d , in the 

distribution sense for each pair . ( )ΨΦ,
 This definition can be extended on the 
conservation laws defined by the system 

 , in , 
where the unknown is 

( ) 0=+ udivFut ( )+∞× ,0nR

( )muuuu ,...,, 21=  and 
the flux function  

( nmM
FF

FF
F

m
n

m

n

,
...

.........
...

1

11
1

∈
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

= )  is given. The 

initial value problem 

 , in , ( ) 0=+ udivFut ( )+∞× ,0nR gu =  on 

, for a given { 0=× tRn } ∈g  , has an 
integral solution and the entropy/ entropy flux 
pair in the same manner as above. 

locL1

 Definition 3.5. We say that  is 
an integral solution of (CL) if there exists 

locLu 1∈

( ){ }∫ ∫
∞ ∇+0 :nR t dxdtvuFuv + , 

for all , where  is the space of real 
valued function with compact support. 

( ) 00., =∫ nR
dxgv

1
cCv∈ 1

cC

 Definition 3.6. We call  an 
entropy/entropy flux pair of the conservation 

law provided  is convex, 

( ΨΦ, )

RmR →Φ :

( )nΨΨΨ=Ψ ,...,, 21  satisfies Φ∇=Ψ∇ B , for 
FB ∇= . 

 At the end of section we gives 
 Definition 3.7. We say that u is an 

entropy solution providing that ( )+Φu
dt
d

 

( ) 0≤Ψ∇ u , in the distribution sense for each 
pair ( )ΨΦ, . 
 

4. ANALYSIS OF THE GIBBS POTENTIAL 
We take the Gibbs function 

, see figure 6 and the reduced 

temperature 

ηθεϕ 0−=

0
0

θ
θθ −

=u , otherwise u is a 

local perturbation near the transition value 
. We have also like in the previous section 0θ

( ) ( ) 022
~

11
~ == εε uu , ( ) ( ) ct== 22.1

~~
1

εϕϕ ε , indeed 

( ) ( )εηθεϕ ~
01~ −= , particularly ( ) −=1~

1 εϕ  
( )εηθ 10

~  and 
 ( ) ( )εηθεϕ 202

~1~ −= , thus 

 ( ) ( )2211
~~ εϕεϕ ′=′ , consequently 

( ) =11
~ εϕ  ( )22

~ εϕ , after doing void potential 
value. As in the previous section where we 
used the entropic analysis, we can define the 
super- thermal states according to Gibbs 
potential. 

 
 

Figure 6. Evolution of potentials Gibbs of the two 
phases 

 
 Physically, it exists there a solid 
dispersed phase into the matrix of liquid phase 
at the level of mushy zone, perhaps the 
mixture zone occupies  a thin domain, 
therefore it can be considered of null measure. 
We have seen that the solid fraction function 
χ  can characterize the distribution of the 

solid germs into erv-system. In this way, the 
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internal energy ε  is consistent with the 

function χ , that is ε  is continuous similar 

to χ , but the internal energy has at most 
discontinuities of the first kind. For our 
transformation governed by a thermal 
conduction process we adopt the framework of 
the two parameters  taking account for 
the independent variable

( u,ϕ )
χ ,  

( ) ( )εϕχχεϕ 1
~,~ =  + ( ) ( )εϕχ 2

~1− ,  
( ) ( )+= εχχε 1

~,~ uu  ( ) ( )εχ 2
~1 u− , 

( ) ( ) ( ) uuKuuKq ∇−−∇−= 2
~

11
~

χχ , 

u being continuous on B, a.e. . The 
energy and the entropy of the interface are 
neglected. The thermodynamics of the erv-
system assure relations in a local form:  

+∈Rε

rdivq +−=ε& , ( ) 0≤−+ ruuqdivϕ& , in 

, where S(t) is the free interface, ( )tSB −
[ ] [ ]mqv =ε , [ ] [ ]mquv ≥ϕ  on C, 
where v is the displacement speed of the 
interface, m an outer unit normal of S(t). 
 The quantity defined by  

( ) { } ( ) ∫∫∫ −+′=Γ ervervFrerv urdxuqnddxver σϕ , 
is the dissipation functional of the erv-system. 
Obviously, we have . The non 
dissipative phenomenon of the interface can 
be expressed by the stability conditions of the 
functional : , when 

, or locally  

( ) 0≤Γ erv

( )ervΓ ( ) 0lim =Γ
∞→

nn
erv

( ) 0lim =
∞→

nn
ervmes [ ] .mqL =ν  We 

don’t detail other results about the dynamic 
models of the phase transition in metals with 
mass transport of Mullins-Sekerka type. Such 
models were initiated by W.W. Mullins& R.F. 
Sekerka, 1963, R.F. Sekerka, 1968, N. 
Goldenfeld, 1969. We made an energetic and 
mass balance from which derive the global 
growth relations of the area of interfaces and 

the phase volumes. For this particular model 
the state of the erv-system is characterized by 
the parameters { } Σ∈cu, , where u is a 
reduced temperature, c is a concentration of 
dissolved element in excess from liquid phase. 
Moreover, the state point  is a steady 
point for the functionals:  

{ }cu,

( ) ( )( ) ( )∫+= B dxtuatBLvoltf 21 ,  

2
))(()(2

atStf += βσ   ∫ ∫+
B B

dxtcLdxtu ;)()(2 α

5. SOLID-SOLID TRANSITION: AUSTENITE-
PERLITE 

The cooling process austenite-perlite 
develops over the interval of temperature 
[ ]2,1 ρρ  and defines an irreversible 
transformation during a time period. For a 
temperature θ  greater then 2ρ  the austenite 
phase is stable, when  appears a 
perlite phase (bainite) and for 

21 ρθρ <<

θ  less then  
and nearest for , an instantaneous and 
reversible transition holds. The austenite fraction 
transformed in martensite grows at the same 
time as the rapidly decreasing of the temperature 

from  value to  value. Models of solid-
solid phase transition were studied by A. 
Visintin, 1987, R. Abeyaratne & K. Knowles, 
1992, M. E. Gurtin, 1993, P. Cermelli & M. E. 
Gurtin, 1994, taking account for the nonlinear 
constitutive laws. Some processes for the 
transformations of the mixture using as variable 
the concentration was investigated by G. 
Ruddock, 1994. 

1ρ

1ρ

2ρ 1ρ

The austenite-perlite transition as an 
isotherm process (with liberation of latent heat) 
is governed by the Johnson-Avrami-Mehl law. 

Let [ ] ( ) [ ]1,02,1 ∈→∈ tFρρθ  be a 
vector valued function, we define 

( ) ( ) ( ) ( )θθθφ
atbetFt −−== 1, , where b is a 

rate function of nucleation of the perlite 
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phase, and  a, b∈ , a(0)>0, 

b(ρ

[( 21
0 ,ρρC ])

2)=0. When θ  decrease near  the 
nucleation falls and the element size of the 
structure grows. In this case we obtain a 
column structure. When 

1ρ

θ  tend to  the 
nucleation became greater and the germ size 
growing develops slowly. In this way we 
obtain an equi-axe structure. We characterize 
the erv-system transition from the nucleation 
point of view and the growing of the new 
phase taking as an internal energy 

2ρ

( ) ( )+= xtCxt ,, θε  ( )xtF ,λ  μ+ , where C is the 
latent heat at constant volume, F is the 
austenite fraction transformed and μ  a scale 
factor, we introduce the energetic equilibrium 
equation 

ρ(C(θ)θ(x,t)+ λF(x, t))°-KΔθ(t,x) = 
h(t,x), a.p.t. ( ) . [ ] QBTxt =×∈ ,0,

 
6. CONCLUSIONS 

 We have investigated some models of 
phase transition on the range of temperature 
from 60° to 1495°C. By their balance 
equations and their own characteristics, these 
models answer to the exigencies of the 
thermodynamics. We recall a model of an 
elastic-plastic deformation consisting in a 
weak formulation compatible to the Perrin 
principle, a new formulation of the second 
principle of thermodynamics, which says: 
The state parameters change along a phase 
transition, their initial values differ from 
final values. The treatment of the equations 
of Stefan type corresponding to these 
models was made by the classical 
variational technics, using results of 
monotony and compacity of Nonlinear 
Analysis. 
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