

 “HENRI COANDA” GERMANY “GENERAL M.R. STEFANIK”
 AIR FORCE ACADEMY ARMED FORCES ACADEMY
 ROMANIA SLOVAK REPUBLIC

INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER
AFASES 2011

Brasov, 26-28 May 2011

A VERSION OF ROBBINS-MONROE ALGORITHM

Neculai CRISMARU

”Transilvania” University, Brasov, Romania

Abstract: In the present paper, we present a better version than the Robbins-Monroe algorithm, which
uses the speed of convergence of Robbins-Monroe strings of real functions.

Mathematics Subject Classification 2010: 62L20.

Key words: Robins-Monroe algorithm, speed of convergence, stochastic approximation.

1. INTRODUCTION

Let f:R R be an unknown function, and
x* the unique unknown root of f(.)([1],[2]). We
suppose that:

→

1) f(.) is not decreasing on R
2) f(.) can be observed at each real value x

from R, but each observation, noted by yx, is
not very accurate, she is corrupted by
observations errors (noises). So, we have

yx=f(x)+εx (1)
where εx: Ω→R, is the random variable which
means noises of observations, and it has the
next property:

E[εx]=0, x∈R (2) ∀
So, for f(.) we have random variables families
{εx}x, x∈R([4], p.2,5). Let be known, a
sequence of the real numbers, (an) , and
x0∈R, called the initial point. It will be made a
sequence of the random variables, called the
Robbins-Monroe sequence of the
approximations, which has the next forms ([4],
p5):

*Nn∈

xn+1(.)=xn(.)+(an+1) (.), x0
nxy ∈R,

(an)n⊂ [0,+∞) (3)
and

nxy (.)=f(xn)+ 1+nε , E[1+nε]=0, ,
nxy 1+nε :

Ω R,→ ∀ n∈N (4)

We have an almost sure convergence
theorem of the Robbins-Monroe sequences
from (3).

Theorem 1. ([5], p.214-215)
In addition, we suppose that we have the

next conditions:
(a) E[|x1, x2, … ,xn]=f(xn) (a.s.),

nxy
∀ n∈N

(b) an>0,∀ n∈N*, =+∞ , <+∑
+∞

=1n
na ∑

+∞

=1

2

n
na ∞

(c) There exists a continuously twice
differentiable function on R, named Lyapunov
function, V: R R, satisfying the following
conditions:

→

517

 (c.1.) there exists V”(.) on R, and V”(.)
is bounded on R (that means, it’s second
derivative is bounded on R)
 (c.2.) there are two functions a, b:[0,+

) R, so that: ∞ →
(c.2.1.) a(.) and b(.) is continuously

on [0,+) ∞
(c.2.2.) a(.) and b(.) is no

decreasing on [0,+) ∞
(c.2.3.) a(x) 0, b(x) 0,

x∈[0,+)
≥ ≥

∀ ∞
(c.2.4.) a(0)=b(0)=0 and
a(x)=+∞

∞→x
lim

(c.2.5.)a(|x|)≤V(x) b(|x|),≤ ∀ x∈R
(c.3.) 0<∀ α 1<α 2, exists the real

number {V ’(x-x*)f(x)}>0
2

*
1 ||

inf
αα ≤−≤ xx

(d) E[|yx
2 | | x1 , x2 , … , xn] <σ2 (a.s.)

In this conditions, we have that
xn(.) x*, when n →+ (or, with other
words we have xn=x*(a.s)).

⎯→⎯ ..sa ∞

+∞→x
lim

In real applications, it will be frequently

taken an=
n
1 ([3], p.4). The practical method to

use the Robbins-Monroe algorithm is:
Step 1. First, we elect (in random way) a

real value, which is noted by x0.
Step 2. Now, we make an observation

(with noise) of f(.) in x0, noted by
0

~
xy , this

means that we have the error-corrupted
observations, and the observation errors are
noted by

0

~
xε , so we have =f(x0)+

0

~
xy

0

~
xε . This

observation is a real value, and it represents a
selection of the random variable

(.)=f(x0)+
0xy

0xε (.), where
0

~
xε is a selection of

the random variable
0xε (.). In this moment, the

only value which is obtained from external
observation on f (.) in x0, is the real number

(which is called the observation of f(.) in
x0, corrupted by the observation errors).

0

~
xy

Step 3. With the real number from step
2, and with (3), we obtain the real number

0

~
xy

1
~x =x0-

01
1
+ 0

~
xy (5)

Now, we repeat the step 2 and 3, and we
change on x0 with 1

~x , obtaining another

number 2
~x , and so on. After we repeat steps 2

and 3 for n-times, you get a string of real
numbers, noted with (nx~)n. Each value nx~ is a
selection (real value) of random variable
xn+1(.) from (3), and is achieved by formula (3)
such that:

1
~

+nx = nx~ -
1

1
+n nxy~ ,∀ n∈N (6)

If f(.) satisfies the conditions of the
theorem 1, then we have:

(nx~) ⎯⎯ →⎯ +∞→n x*. (7)
The solid application of the steps before,

can generate a number of issues related to the
convergence of string (nx~)n , such as:

1. The first category of issues that may
arise in the practical way, it is related to the
influence of the observation error of function f
(.) in each point nx~ .

2. The second category of issues, it is
related to the speed of convergence of string
(nx~)n obtained with the formula (3). This
problem is very important when this algorithm
is implemented on computers for process,
where the obtaining time for a single x* root
has great importance in the management
efficiency of that process through the
computer.

3. Another category of problems are those
related to the choice of initial point x0, so that
string (6) to be convergent, and with greater
speed of convergence.

4. Problems may also appear in
transforming this algorithm - which is a
sequential arrangement, in a parallel one.

5. A last category of problems that may
appear related to the algorithm (3) of Robbins-
Monroe, is concerned about the optimum way
in which we choose (an)n string, to fulfill the
conditions of Theorem 1 (or equivalent), and
to provide an increased speed of convergence.

In this paper we will mainly deal with the
second category of issues, and partly with the
last ones. There are examples of functions,
which provides us observation strings and
which obtain converged (6) form strings, but
which have little convergence speed. We make
the observation that, checking the theorem 1
hypothesis in practical situations, can create

nxy~

518

 “HENRI COANDA” GERMANY “GENERAL M.R. STEFANIK”
 AIR FORCE ACADEMY ARMED FORCES ACADEMY

 ROMANIA SLOVAK REPUBLIC

INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER
AFASES 2011

Brasov, 26-28 May 2011

technical problems (depending on the
complexity of the correspondence law of that
function).

2. THE MAIN RESULTS

Now, we start this section with an example
about the convergence speed of a particular
function.
Example 1. We consider the function

f:[0,+)→R,f(x)=∞ x -2, (8)
having as unique root x*=4. It will be taken
another helping function, noted by f1 (.)

f1(x)=
⎪
⎩

⎪
⎨

⎧

≥−

∈
≤−

10,210

]10,0(),(
0,2

x

xxf
x

, f1:R R, (9) →

f1(.) is bounded on R.

This function took this form because we

make the assumption that it is known before
(additional information) that the only root of
function f1 (.) is in the range [0, 10], and for
that the new function to be bordered. To be
noticed that the equations f(x) =0 and f1(x) =0
have the same root, x*=4. From now on (in this
example) we will work only with function
f1(.).

For the function f1 (.) in this example, it
can be created a Lyapunov function that to
fulfill the conditions of Theorem 1 and that to
look like the Robbins-Monroe string from the
previous example, string attached on function
f1(.) that satisfies the assumptions (a) and (d)
of Theorem 1 with an=1/n, n 1. ≥

If, for the function f1(.) from example 1. it
is assumed that we have observations about it,
in any point x∈R, a certain error, known in
advance, then if it is chosen the initial point x0
selected too far away from the unique root of
f1(.), then the algorithm Robbins-Monroe
converges very slow to this root. For example,
if you take as the initial point on the x0= 12.0,
and if we assume that the error of observation

of f1(.) in each point x of R has the order 10-2
(meaning that in all x∈[0, +), we have | yx - f
(x) | < 0.01, where yx= f1(x) + εx , with error εx
that has the property | εx | < 0.01), then are
obtained the next terms of the Robbins-
Monroe string attached of f1(.), x0, and the
maximum precision 0.01. These results were
obtained with a C++ program and are
presented following the model in [6], p. 23. In
this program, the initial value of x0= 12.0, and
the number of iteration, n= 10. The final
results are the following (presented with 6
decimal) presented like in ([7], p.20) and [6],
p.23):

Table 1.
x[0]=12.000000
x[1]=10.837722778
x[2]=10.256584167
x[4]=9.585001945
x[5]=9.366808891
x[6]=9.190338135
x[7]=9.043643951
x[8]=8.917922974
x[9]=8.808657646
x[10]=8.711833954

The average error is equal to the Em = -
002267.

Here x[n+1]=x[n]–
1

1
+n

yxn,where

yxn=f(x[n])+εn+1 , n=0,2,…,8, and
 εn+1=z, from the (n+1)

iteration on C++ program. Also, the error is
the average (simple arithmetic average) of all
the errors recorded in the 9 observations on f
1(.), i.e. Em=(ε1+...ε9)/9=0.002267.

The crop was done to the 7th decimal (and
have been retained the first 6 decimals). We
give below the centralized values table of f1(.)
function, seen (with given perturbations data
of εi, i = 1,2, ...,8) in the points x[i], values
noted by yx[i], i = 1,2,..,8.

519

Table.1’.

(i)
Number of
Iterations

(1)

(yx[i])
The observed

value of f1(.) on x[i]
(2)

(f(x[i]))
The exact value of

f1(.) on x[i]
(3)

The observations
errors εi+1 (on x[i])

(εi+1=yx[i] – f(x[i]))
(4)

 0 yx[0]= 1.162278 f(x[0])= 1.162278 ε1 = 0.000000
 1 yx[1]= 1.162278 f(x[1])= 1.162278 ε2 = 0.000000
 2 yx[2]= 1.162278 f(x[2])= 1.162278 ε 3 = 0.000000
 3 yx[3]= 1.136622 f(x[3])= 1.141522 ε 4 = - 0.004900
 4 yx[4]= 1.090965 f(x[4])= 1.095965 ε 5 = - 0.005000
 5 yx[5]= 1.058824 f(x[5])= 1.060524 ε 6 = - 0.001700
 6 yx[6]= 1.026857 f(x[6])= 1.031557 ε 7 = - 0.004700
 7 yx[7]= 1.005765 f(x[7])= 1.007265 ε 8 = - 0.001500
 8 yx[8]= 0.983389 f(x[8])= 0.986289 ε 9 = - 0.002900
 9 yx[9]= 0.968238 f(x[9])= 0.967938 ε 10 = 0.000300

If we operate 100 iteration (in same
conditions above), the following results are
obtained:

x[100]=6.934031010
The average error is equal to the Em= -

0.000495
If we do now (with the same function in

the same conditions) 500 iteration, we obtain:

Table 2.
x[493]=6.066642284
x[494]=6.065702915
x[495]=6.064774990
x[496]=6.063833237
x[497]=6.062898636
x[498]=6.061974525
x[499]=6.061045647
x[500]=6.060128212
x[501]=6.059205055

The average error is equal to the Em= -
0.000041

If we take 1000 iterations, in the same
conditions (x0 = 12.0 and 6-digit accuracy),
we have:

Table 3.
x[992]=5.765196800
x[993]=5.764791965
x[994]=5.764384747
x[995]=5.763985157

x[996]=5.763581753
x[997]=5.763183594
x[998]=5.762779713
x[999]=5.762382984
x[1000]=5.761984348

The average error is equal to the Em= -
000071

We notice that after 1000 iteration, we are
still far away from the root x*= 4. After 5000
iteration we obtain the following results:

520

 “HENRI COANDA” GERMANY “GENERAL M.R. STEFANIK”
 AIR FORCE ACADEMY ARMED FORCES ACADEMY
 ROMANIA SLOVAK REPUBLIC

INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER
AFASES 2011

Brasov, 26-28 May 2011

x[5]=5.216153145 and the error in the

observations of f1(.) is 0.002800 and
f1(x[4,999])=0.283902 and
y(x[4,999])=0.286702

The average error is equal to the Em= -

0.000069
After 10000 iteration, we obtain:
x[10000]=5.033749104 and the error in the

observations of f1(.) is - 0.000600

and f (x[9999])=0.243607
and y(x[9999])=0.243007

The average error is equal to the Em= -
0.000091

As we can see, studying the numerical
results above (including those in table 1) shall
we consider that, starting from

x0 = 12.0, we get a weakly convergent
Robbins-Monroe string.

This demonstrates that, in this case, the
weak convergence of the algorithm, is caused
by the chosen value for x0, too far from x*=4.
It is clear that the classic Robbins-Monroe
algorithm, applied to this modified functions
provided by departure, x0 = 12.0, it is weakly
convergent (by unique root x*= 2).

Now we slightly change the Robbins-
Monroe algorithm form, about which we will
show that is faster than Robbins-Monroe
string.

Let it be the (xn)n random variables string,
attached to the function f:R→ R, from the
first part, string given by the recurrence
formula:

xn+1(.)=xn(.)+(an+1) (.),x0∈R, cu
nxy

yx=f(x)+εx (10)
which has a weak convergence to the root x*.
Usually, the weak convergence of this series is
because of the high speed low variation of f1(.)
in a neighborhood of x*, meaning that the

fraction

*xV

|)(|
|)(|

*

*
1

xx
xx

n

n

−
−+

ω
ω has a value nearly

equal to 1 (or equivalently, the difference
|xn+1-x*| is approximately equal to x*)([6], p.
21-22). We suppose that the function f1(.) has
all the properties from part A, and meet the
assumptions of the theorem 1. Then we have:

Theorem 2. If the function f1(.) has the
above conditions and assumptions of the
theorem 1, then the function g1(x)=Kf(x),
K>1, has the same assumptions of the theorem
1, and so, the Robbins-Monroe string attached
on the function g1(.), is almost certainly
convergent to x* root of his g1(.) (g1(.) and
f1(.) have the same root, x*=4).
Proof: Simple checking:
Returning to example 1, we make a new
Robbins-Monroe string for f1(.) of (9) given

by xn+1(.)=xn(.)-
12

1
+n

(3 (.)), x0
nxy ∈R,

∀ n∈N. We numerically simulate this variant
of the algorithm, for the function f1(.) f1:R

R, f1(x)=→

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤−
≥−

∈−

0,2
10,0.210

]10,0[,0.2

x
x

xx

, x0=12.0 and

g1(x)=
⎪
⎩

⎪
⎨

⎧

>−

∈−

≤−

10),210(*3

]10,0(),2(*3

0,6

x

xx

x

, g1:R R. →

For algorithm Robbins-Monroe, applied
his f1(.), see some results in the part A, in
tables 1, 1', 2, and 3. We run the same number
of iterations (10, 100, 500, 1000, 5000, and
10,000) starting from the same initial point x1
= 12.0, and with the same precision display (as

521

number of decimals displayed) in the
algorithm Robbins-Monroe for f1(.) and
3f1(.), implemented in the C++ program for
the function f1 (.), and with another C++

program, for function g1(.), with increase of
the errors by multiplication with 3 to function
g1(.), we reach to the results shown in the table
below:

Table 4.

Nr. de iteration (n) f1(.) 3f1(.)=g1(.)
10 x[10]=8.711833954 x[10]=8.140531540
100 x[100]=6.934031010 x[100]=6.013100624
500 x[500]=6.060128212 x[500]=5.158834457
1000 x[1000]=5.761984348 x[1000]=4.907297134
5000 x[5000]=5.216153145 x[5000]=4.508469105
10000 x[10000]=5.033749104 x[10000]=4.394921303

For the same function g1(.), but with the
stagnation of the order of magnitude of the
error of observation at the multiplication by 3,
the simulation gives the following results:

Table 5.

n=10, x[10]=8.137619972
n=100, x[100]=6.011349201
n=500, x[500]=5.157924652
n=1000, x[1000]=4.906517982
n=5000, x[5000]=4.507922173

n=10000, x[10000]=4.394413471, if we
compare them with those in table 4. we see
that this variant of the Robbins-Monroe
algorithm (with or without raising the error of
observation from f1(.) to g1(.)=3f1(.)) it is
much more efficient than the “classic”.

REFERENCES:

1. Orman, G. V., Handbook of Limit Theorems
and Stochastic Approximation, Brasov:

“Transilvania” University Press (2003), p.131-
138.
2. Tze Leung Lai, Stochastic approximation,
The Annals of Statistics, 2005, Vol 31, No. 2,
Institute of Mathematical Statistics (2003), p.
391-406.
3. Kushner, H. J., Yin, G. G., Stochastic
Approximation Algorithms and Applications,
Springer (2003), p. 2- 7.
4. Chen, H. F., Stochastic Approximation and
Its Applications, Kluwer Academic Publishers
(2002), p.1-21.
5. Morozan T., Stabilitatea sistemelor cu
parametrii distribuiti, Bucharest: Editura
Academiei Republicii Socialiste Romania
(1969), p. 214-223.
6. Maruster S., Metode numerice in rezolvarea
ecuatiilor neliniare, Bucharest: Editura
Tehnica (1981), p. 21-22.
7. Simionescu I., Draga M., Moise V., Metode
numerice in tehnica-aplicatii in Fortran,
Bucharest: Editura Tehnica (1995).

522

