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1. INTRODUCTION 
 

 

Let f:R R be an unknown function, and 
x* the unique unknown root of f(.)([1],[2]). We 
suppose that: 

→

1) f(.) is not decreasing on R 
2) f(.) can be observed at each real value x 

from R, but each observation, noted by yx,  is 
not very accurate, she is corrupted by 
observations errors (noises). So, we have 

yx=f(x)+εx      (1) 
where εx: Ω→R, is the random variable which 
means noises of observations, and it has the 
next property: 

E[εx]=0, x∈R    (2) ∀
So, for f(.) we have random variables families 
{εx}x, x∈R([4], p.2,5). Let be known, a 
sequence of the real numbers, (an) , and 
x0∈R, called the initial point. It will be made a 
sequence of the random variables, called the 
Robbins-Monroe sequence of the 
approximations, which has the next forms ([4], 
p5): 

*Nn∈

xn+1(.)=xn(.)+(an+1) (.), x0
nxy ∈R, 

(an)n⊂ [0,+∞ )    (3) 
and 

nxy (.)=f(xn)+ 1+nε , E[ 1+nε ]=0, ,
nxy 1+nε : 

Ω R,→ ∀ n∈N     (4) 
 

We have an almost sure convergence 
theorem of the Robbins-Monroe sequences 
from (3). 

Theorem 1. ([5], p.214-215) 
In addition, we suppose that we have the 

next conditions: 
(a) E[ |x1, x2, … ,xn]=f(xn) (a.s.), 

nxy
∀ n∈N                                                                            

(b) an>0,∀ n∈N*, =+∞ , <+∑
+∞

=1n
na ∑

+∞

=1

2

n
na ∞                     

(c) There exists a continuously twice 
differentiable function on R, named Lyapunov 
function, V: R R, satisfying the following 
conditions:  

→

517



       (c.1.) there exists V”(.) on R, and V”(.) 
is bounded on R (that means, it’s second 
derivative is bounded on R) 
       (c.2.) there are two functions a, b:[0,+ 

) R, so that: ∞ →
(c.2.1.) a(.) and  b(.) is continuously 

on [0,+ ) ∞
(c.2.2.) a(.) and  b(.) is no 

decreasing on [0,+ ) ∞
(c.2.3.) a(x) 0, b(x) 0, 

x∈[0,+ ) 
≥ ≥

∀ ∞
(c.2.4.) a(0)=b(0)=0 and  
a(x)=+∞  

∞→x
lim

(c.2.5.)a(|x|)≤V(x) b(|x|),≤ ∀ x∈R 
(c.3.) 0<∀ α 1<α 2, exists the real 

number {V ’(x-x*)f(x)}>0 
2

*
1 ||

inf
αα ≤−≤ xx

(d) E[ |yx
2 | | x1 , x2 , … , xn ] <σ2 (a.s.) 

In this conditions, we have that 
xn(.) x*, when n →+  (or, with other 
words we have xn=x*(a.s) ). 

⎯→⎯ ..sa ∞

+∞→x
lim

In real applications, it will be frequently 

taken an=
n
1 ([3], p.4). The practical method to 

use the Robbins-Monroe algorithm is: 
Step 1. First, we elect (in random way) a 

real value, which is noted by x0.  
Step 2. Now, we make an observation 

(with noise) of f(.) in x0, noted by 
0

~
xy , this 

means that we have the error-corrupted 
observations, and the observation errors are 
noted by 

0

~
xε , so we have =f(x0)+ 

0

~
xy

0

~
xε . This 

observation is a real value, and it represents a 
selection of the random variable 

(.)=f(x0)+
0xy

0xε (.), where 
0

~
xε is a selection of 

the random variable 
0xε (.). In this moment, the 

only value which is obtained from external 
observation on f (.) in x0, is the real number 

(which is called the observation of f(.) in 
x0, corrupted by the observation errors). 

0

~
xy

Step 3. With the real number from step 
2, and with (3), we obtain the real number  

0

~
xy

1
~x =x0-

01
1
+ 0

~
xy       (5) 

Now, we repeat the step 2 and 3, and we 
change on x0 with 1

~x , obtaining another 

number 2
~x , and so on. After we repeat steps 2 

and 3 for n-times, you get a string of real 
numbers, noted with ( nx~ )n. Each value nx~  is a 
selection (real value) of random variable 
xn+1(.) from (3), and is achieved by formula (3) 
such that: 

1
~

+nx = nx~ -
1

1
+n nxy~ ,∀ n∈N  (6) 

If f(.) satisfies the conditions of the 
theorem 1, then we have: 

( nx~ ) ⎯⎯ →⎯ +∞→n x*.     (7) 
The solid application of the steps before, 

can generate a number of issues related to the 
convergence of string ( nx~ )n , such as: 

1. The first category of issues that may 
arise in the practical way, it is related to the 
influence of the observation error of function f 
(.) in each point nx~ . 

2. The second category of issues, it is 
related to the speed of convergence of string 
( nx~ )n obtained with the formula (3). This 
problem is very important when this algorithm 
is implemented on computers for process, 
where the obtaining time for a single x* root 
has great importance in the management 
efficiency of that process through the 
computer. 

3. Another category of problems are those 
related to the choice of initial point x0, so that 
string (6) to be convergent, and with greater 
speed of convergence. 

4. Problems may also appear in 
transforming this algorithm - which is a 
sequential arrangement, in a parallel one. 

5. A last category of problems that may 
appear related to the algorithm (3) of Robbins-
Monroe, is concerned about the optimum way 
in which we choose (an)n string, to fulfill  the 
conditions of Theorem 1 (or equivalent), and 
to provide an increased speed of convergence. 

In this paper we will mainly deal with the 
second category of issues, and partly with the 
last ones. There are examples of functions, 
which provides us observation strings and 
which obtain converged (6) form strings, but 
which have little convergence speed. We make 
the observation that, checking the theorem 1 
hypothesis in practical situations, can create 

nxy~
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technical problems (depending on the 
complexity of the correspondence law of that 
function). 
 

2. THE MAIN RESULTS 
 

Now, we start this section with an example 
about the convergence speed of a particular 
function. 
Example 1. We consider the function 

f:[0,+ )→R,f(x)=∞ x -2,   (8) 
having as unique root x*=4. It will be taken 
another helping function, noted by f1 (.)  

f1(x)=
⎪
⎩

⎪
⎨

⎧

≥−

∈
≤−

10,210

]10,0(),(
0,2

x

xxf
x

,     f1:R R, (9) →

f1(.) is bounded on R. 
 
This function took this form because we 

make the assumption that it is known before 
(additional information) that the only root of 
function f1 (.) is in the range [0, 10], and for 
that the new function to be bordered. To be 
noticed that the equations f(x) =0 and f1(x) =0 
have the same root, x*=4. From now on (in this 
example) we will work only with function 
f1(.). 

For the function f1 (.) in this example, it 
can be created a Lyapunov function that to 
fulfill the conditions of Theorem 1 and that to 
look like the Robbins-Monroe string from the 
previous example, string attached on function 
f1(.) that satisfies the assumptions (a) and (d) 
of Theorem 1 with an=1/n, n 1. ≥

If, for the function f1(.) from example 1. it 
is assumed that we have observations about it, 
in any point x∈R, a certain error, known in 
advance, then if it is chosen the initial point x0 
selected too far away from the unique root of 
f1(.), then the algorithm Robbins-Monroe 
converges very slow to this root. For example, 
if you take as the initial point on the x0= 12.0, 
and if we assume that the error of observation 

of f1(.) in each point x of R has the order 10-2 
(meaning that in all x∈[0, +), we have | yx - f 
(x) | < 0.01, where yx= f1(x) + εx , with error εx  
that has the property | εx | < 0.01), then are 
obtained the next terms of the Robbins-
Monroe string attached of f1(.),  x0, and the 
maximum precision 0.01. These results were 
obtained with a C++ program and are 
presented following the model in [6], p. 23. In 
this program, the initial value of x0= 12.0, and 
the number of iteration, n= 10. The final 
results are the following (presented with 6 
decimal) presented like in ([7], p.20) and [6], 
p.23): 
 
Table 1. 
x[0]=12.000000 
x[1]=10.837722778  
x[2]=10.256584167  
x[4]=9.585001945  
x[5]=9.366808891  
x[6]=9.190338135  
x[7]=9.043643951  
x[8]=8.917922974  
x[9]=8.808657646  
x[10]=8.711833954  

The average error is equal to the Em = -
002267. 

Here x[n+1]=x[n]–
1

1
+n

yxn,where 

yxn=f(x[n])+εn+1 , n=0,2,…,8, and 
   εn+1=z, from the (n+1) 

iteration on C++ program. Also, the error is 
the average (simple arithmetic average) of all 
the errors recorded in the 9 observations on f 
1(.), i.e. Em=(ε1+...ε9)/9=0.002267. 

The crop was done to the 7th decimal (and 
have been retained the first 6 decimals). We 
give below the centralized values table of f1(.) 
function, seen (with given perturbations data 
of εi, i = 1,2, ...,8) in the points x[i], values 
noted  by  yx[i], i = 1,2,..,8. 
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Table.1’. 

(i) 
Number of 
Iterations 

(1) 

(yx[i]) 
The observed 

value of f1(.) on x[i] 
(2) 

(f(x[i])) 
The exact value of 

f1(.) on x[i] 
(3) 

The observations 
errors εi+1 (on x[i]) 

(  εi+1=yx[i] – f(x[i]) ) 
(4) 

             0 yx[0]= 1.162278 f(x[0])= 1.162278 ε1 = 0.000000 
             1 yx[1]= 1.162278 f(x[1])= 1.162278 ε2 = 0.000000 
             2 yx[2]= 1.162278 f(x[2])= 1.162278 ε 3 = 0.000000 
             3 yx[3]= 1.136622 f(x[3])= 1.141522 ε 4 = - 0.004900 
             4 yx[4]= 1.090965 f(x[4])= 1.095965 ε 5 = - 0.005000 
             5 yx[5]= 1.058824 f(x[5])= 1.060524 ε 6 = - 0.001700 
             6 yx[6]= 1.026857 f(x[6])= 1.031557 ε 7 = - 0.004700 
             7 yx[7]= 1.005765 f(x[7])= 1.007265 ε 8 = - 0.001500 
             8 yx[8]= 0.983389 f(x[8])= 0.986289 ε 9 = - 0.002900 
             9 yx[9]= 0.968238 f(x[9])= 0.967938 ε 10 = 0.000300 
 

If we operate 100 iteration (in same 
conditions above), the following results are 
obtained: 

x[100]=6.934031010  
The average error is equal to the  Em= - 

0.000495 
If we do now (with the same function in 

the same conditions) 500 iteration, we obtain: 
 

Table 2. 
x[493]=6.066642284  
x[494]=6.065702915 
x[495]=6.064774990  
x[496]=6.063833237  
x[497]=6.062898636  
x[498]=6.061974525  
x[499]=6.061045647  
x[500]=6.060128212  
x[501]=6.059205055  
 

The average error is equal to the Em= - 
0.000041 

If we take 1000 iterations, in the same 
conditions (x0 = 12.0 and 6-digit accuracy), 
we have: 
 
Table 3. 
x[992]=5.765196800  
x[993]=5.764791965  
x[994]=5.764384747  
x[995]=5.763985157  
 
x[996]=5.763581753  
x[997]=5.763183594  
x[998]=5.762779713  
x[999]=5.762382984  
x[1000]=5.761984348  
 

The average error is equal to the Em= - 
000071  

We notice that after 1000 iteration, we are 
still far away from the root x*= 4. After 5000 
iteration we obtain the following results: 
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x[5]=5.216153145 and the error in the 

observations of f1(.) is 0.002800 and 
f1(x[4,999])=0.283902 and 
y(x[4,999])=0.286702 

 
The average error is equal to the Em= - 

0.000069 
After 10000 iteration, we obtain: 
x[10000]=5.033749104 and the error in the 

observations of f1(.) is  - 0.000600 

and f (x[9999])=0.243607 
and y(x[9999])=0.243007 

The average error is equal to the Em= - 
0.000091 

As we can see, studying the numerical 
results above (including those in table 1) shall 
we consider that, starting from 

x0 = 12.0, we get a weakly convergent 
Robbins-Monroe string. 

This demonstrates that, in this case, the 
weak convergence of the algorithm, is caused 
by the chosen value for x0, too far from x*=4. 
It is clear that the classic Robbins-Monroe 
algorithm, applied to this modified functions 
provided by departure, x0 = 12.0, it is weakly 
convergent (by unique root x*= 2 ). 

Now we slightly change the Robbins-
Monroe algorithm form, about which we will 
show that is faster than Robbins-Monroe 
string. 

Let it be the (xn)n random variables string, 
attached to the function f:R→  R, from the 
first part, string given by the recurrence 
formula: 

xn+1(.)=xn(.)+(an+1) (.),x0∈R, cu 
nxy

yx=f(x)+εx      (10) 
which has a weak convergence to the root x*. 
Usually, the weak convergence of this series is 
because of the high speed low variation of f1(.) 
in a neighborhood of x*, meaning that the 

fraction 

*xV

|)(|
|)(|

*

*
1

xx
xx

n

n

−
−+

ω
ω  has a value nearly 

equal to 1 (or equivalently, the difference 
|xn+1-x*| is approximately equal to x*)([6], p. 
21-22). We suppose that the function f1(.) has 
all the properties from part A, and meet the 
assumptions of the theorem 1. Then we have: 
 

Theorem 2. If the function f1(.) has the 
above conditions and assumptions of the 
theorem 1, then the function g1(x)=Kf(x), 
K>1, has the same assumptions of the theorem 
1, and so, the Robbins-Monroe string attached 
on the function g1(.), is almost certainly 
convergent to x* root of his g1(.) (g1(.) and 
f1(.) have the same root, x*=4). 
Proof: Simple checking:  
Returning  to example 1, we make a new 
Robbins-Monroe string for f1(.) of (9) given 

by xn+1(.)=xn(.)-
12

1
+n

(3 (.)), x0
nxy ∈R, 

∀ n∈N. We numerically simulate this variant 
of the algorithm, for the function f1(.) f1:R 

R, f1(x)=→

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤−
≥−

∈−

0,2
10,0.210

]10,0[,0.2

x
x

xx

, x0=12.0 and 

g1(x)=
⎪
⎩

⎪
⎨

⎧

>−

∈−

≤−

10),210(*3

]10,0(),2(*3

0,6

x

xx

x

, g1:R R. →

For algorithm Robbins-Monroe, applied 
his f1(.), see some results in the part A, in 
tables 1, 1', 2, and 3. We run the same number 
of iterations (10, 100, 500, 1000, 5000, and 
10,000) starting from the same initial point x1 
= 12.0, and with the same precision display (as 
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number of decimals displayed) in the 
algorithm Robbins-Monroe for f1(.) and 
3f1(.), implemented in the C++ program for 
the function f1 (.), and with another C++ 

program, for function g1(.), with increase of 
the errors by  multiplication with 3 to function 
g1(.), we reach to the results shown in the table 
below: 

 
Table 4. 

Nr. de iteration (n) f1(.) 3f1(.)=g1(.) 
10 x[10]=8.711833954 x[10]=8.140531540 
100 x[100]=6.934031010 x[100]=6.013100624 
500 x[500]=6.060128212 x[500]=5.158834457 
1000 x[1000]=5.761984348 x[1000]=4.907297134 
5000 x[5000]=5.216153145 x[5000]=4.508469105 
10000 x[10000]=5.033749104 x[10000]=4.394921303 

For the same function g1(.), but with the 
stagnation of the order of magnitude of the 
error of observation at the multiplication by 3, 
the simulation gives the following results: 
 
Table 5. 

n=10, x[10]=8.137619972 
n=100, x[100]=6.011349201 
n=500, x[500]=5.157924652 
n=1000, x[1000]=4.906517982 
n=5000, x[5000]=4.507922173 

n=10000, x[10000]=4.394413471, if we 
compare them with those in table 4. we see 
that this variant of the Robbins-Monroe 
algorithm (with or without raising the error of 
observation from f1(.) to g1(.)=3f1(.)) it is 
much more efficient than the “classic”.  
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