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Abstract: The difficulties of elastic contact stress theory arise because the displacement at any point in 
the contact surface depends upon the distribution of pressure throughout the whole contact. To find the 
pressure at any point in the contact of solids of given profile therefore, requires the solution of an 
integral pressure. The difficulty is avoided in the solids, can be modeled by simple Winkler elastic 
foundations or “mattress” rather than an elastic half-space, and the modulations by finite elements. 
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1. FOUNDATION MODEL 
 

The profile, therefore, requires the solution of 
an integral equation for the pressure.The 
difficulty is avoided if the solids can be 
modeled by a simple Winkler elastic 
foundation or ‘mattress” tether than an elastic 
half-space .The model is illustrated in fig.1. 
The elastic foundation, of depth h, rests on a 
rigid base and is compressed by a rigid 
indenter. The profile of the indenter, z(x, y), is 
taken as the sum of the profiles of the two 
bodies being modeled: 
 

 
 

Fig.1.The elastic foundation model 
z (x ,y) =z1(x ,y)+z2(x ,y)      (1) 

There the difficulty  of elastic contact stress 
theory arise because the displacement at any 
point in the contact surface depends upon the 
distribution of pressure throughout the whole 
contact. To find the pressure at any point in the 
contact of solids of given is no interaction 
between the stings of the model, shear between 
adjacent elements of the foundation is ignored. 
If the penetration at the origin is denoted by  δ 
, then the normal elastic displacements of the 
foundation are given by:  

=),( yxuz δ - z (x, y),   δ>z 
       =),( yxuz 0 δ≤ z                   (2) 
The contact pressure at any point depends only 
on the displacement at that point, thus  

p (x ,y)= (K/h) ),( yxuz         (3) 
where  K is the elastic modulus of the 
foundation. 
For two bodies of curved profile having 
relative radii of curvature R’ and R’’, z(x ,y) 
we can write  

)2/()2/( ''2'2 RyRxuz −−= δ        (4) 
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Inside the contact area. Since 0=zu  outside 
the contact, the boundary is an ellipse of 
semi-axes       a=(2δR’)1/2 and b=(2δR’’)1/2. 

The contact pressure by (3), is: 
P(x ,y)= (Kδ/h){1-(x2/a2)-(y2/b2)}       (5) 

Which is paraboloidal rather ellipsoidal as 
given by Hertz theory. By integration the total 
load is: 

P=Kπ a b δ/2h       ..                      (6) 
  In the axi-symetic case a=b= (2δR) 1/2 and  
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  For the two-dimensional contact of long 
cylinders: 

RxaRxuz 2/)(2/ 222 −=−= δ        (8) 
  so  that 

p (x)=(K/2Rh)(a2-x2)                           (9) 
   and the load 
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In the bidimensional case (cylinder), 
K/h=1.8E*/a, and in the axes-symmetric 
case K/h=1.7E*/a where     E* is: 
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Equations (7) and (10) express the 
relationship between the load and the contact 
width. Comparing them with the 
corresponding Hertz equations, agreement can 
be obtained, if in the axi-symmetric case we 
chose K/h=1.70E*/a and in the two-
dimensional case we choose K/h=1.18E*/a.  

For K to be material constant it is 
necessary to maintain geometrical similarity 
by increasing the depth of foundation h in 
proportion to the contact width a. 
Alternatively, thinking of h as fixed requires K 
to be reduced in inverse proportion to a. It is 
consequence of the approximate nature of the 
model that the value of K, required to match 
the Hertz equation are different for the two 
configurations. However, if we take 
K/h=1.35E*/a, the value of a under a given 
load will nod be in error by more than 7% for 
either line or point contact.  

The compliance of a point contact is not so 
well modeled. Due to the neglect of surface 
displacements outside the contact, the 

foundation model gives which is 
half of that given by Hertz. If it were more 
important in a particular application to model 
the compliance accurately we should take 
K/h=0.60E

Ra 2/2=δ

*/a; the contact size a would then be 
too large by a factor of 2 . 
 
 
2. PNEUMATIC TYRES. TRANSVERSE 

TANGENTIAL FORCES FROM 
SIDESLIP AND SPIN 

 
The lateral deformation of the tyre is 
characterized by the lateral displacement u of 
its equatorial line, which is divided into the 
displacement of the carcass us and that of the 
tread at. Q wing to the internal pressure the 
carcass is assumed to carry a uniform tension 
T. This tension resists lateral deflexion in the 
manner of a stretched string. Lateral deflexion 
is also restrained by the walls, which act as a 
spring foundation of stiffness K per unit 
length. The tyre is deflected by a transverse 
surface traction q(x) exerted in contact region 
a≤x≤a .The equilibrium equation is  

Kcuc - T∂2/∂x2=q(x)-Ktut                    12) 
where Kt is the tread stiffness. The ground is 
considered rigid (u2=0) and the motion one 
dimensional, so that we can drop the suffixes. 
Equation (12) can then be solved directly 
throughout in contact region for any assumed 
pressure distribution. The carcass deflexion are 
clearly not negligible however and it is more 
realistic to follow von Schilippe (1941) and 
Temple (1952) who neglected the tread 
deflexion compared with the carcass deflexion 
(ut=0, u=uc) as show in fig. 3. Equation (12) 
then becomes 

u - λ2d2/dx2=q(x)/Kc          (13) 
where the relaxation length λ=(T/Kc)1/2.Tafing 
the case of side slip first, the displacement 
within the contact region is given by 

u=ut-ξx                       (14) 
where ut is the displacement at the leading 
edge (x=-a) . Outside the contact region 
q(x)=0 so that the complementary solution to 
(13) gives 

 u=u1exp (a+x)/λ                                  (15) 
a  head of the contact and  
         u=u2 exp {(a-x)/λ}          (16) 
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at the back of the contact. 
The foundation model is easily adapted for 
tangential loading also to viscoelastic solids.  
A one-dimensional model of the resistance of 
a tyre to lateral displacement is shown in fig.2. 

 

 
Fig.2. The stretched sting’ model of the lateral 

defluxion of a type. 

 
The deflected shape of the equatorial line is 
shown in fig.3 together with the traction 
distribution. 
 
 

 
Fig.3. Traction distribution for a tyre with yaw 

angle ξ and no slip in patch: von Schlippe’s theory. 

 
It is with solid bodies, the infinite traction at 
the trailing edge necessitates slip such that 
deflected shape u(x) has no discontinuity in 
gradient and satisfies the conditions 
q(x)=μ p(x) within the slip region. 
Calculations of the cornering force Q and self-
aligning torque Mx by Pacejka assiming a 
parabolic presure distribution and taking 
λ =3a are show in fig. 4. 

 
 

Fig.4. Parabolic presure distribution 
 
3. ELASTIC FOUNDATION MODEL BY 

FINITE ELEMENT 
 

The model is presented in fig.4, the finite 
plane rectangular elements. In fig.4 is 
presented the variation of contact pressure 
between the role and the rule .The process is 
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iterative and every date when a node by the 
possible zone of contact is make in contact, the 
matrix of stiffness it is modified 
corresponding. 

For the 19-27 nodes it was introduced the 
stiffness (springs) of one constant size for 
beginning about of Ox, Oy, 
directions,determinated by the measure of 
pressure of the 19-27 nodes. 

. If the pressure is changed the direction 
and it is negative and in the anterior node, it is   
positive, than the limited of the contact zone 
it’s in those case two nodes which interacted. 

If the process is repeated from the 
intermediate nodes, we find the place where 
the pressure is changing the sign P>0. 

In this way the x coordinate of the 
respective node represent the semi-breth of 
contact zone. If every nodes where is in 
contact, the stiffness matrix is differenced and 
the maximum stiffness of the elements by who 
we works carrying o 

The dates are: R=150 mm, D=300 mm, 
b=40 mm, ν=0.3, E=2.12*105 Mpa, K=3*108 

Mpa – the maxim stiffness in this node   If the 
pressure is changed the direction and it is 
negative and in the anterior node, it is   
positive, than the limited of the contact zone 
it’s in those case two nodes witch interacted. 

If the process is repeated from the 
intermediate nodes, we find the place where 
the pressure is changing the sign P>0. 

In this way the x coordinate of the 
respective node represent the semi-breath of 
contact zone. If every nodes where is in 
contact, the stiffness matrix is difference and 
the maximum stiffness of the elements by who 
we works carrying oel case and from this case 
of loads the semi-breath is a=63 mm. 

 

 
 

Fig.5. The elastic foundation model by finite 
elements 

 
 

4. CONCLUSIONS 
 
The normal elastic contact could be greatly 

simplified by modeling the elastic bodies by a 
simple Winkler elastic foundation rather than 
by elastic half space. The finite element 
method are one of the best methods to 
determinations the pressure of contact 
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