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Abstract: Robots are widely used tools in remote sensing, and other fields. Based on theirs 
abilities robots are able to carry on tasks unbelievable fir human beings. Main problem 
proposed for solution by the author is to solve problems of automation of the flight of the UAV 
systems. In many air robot applications there is a need from the users to automatize flight of the 
aircraft increasing flight safety, and, quality of the control of the UAV systems. From among 
those available air robots this article deals with quadrotors. The closed loop control systems of 
the UAV being investigated is control of the vertical position of the UAV. The vertical motion 
will be controlled with LQR controller so as to provide flying and handling quality of the UAV. 
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1. INTRODUCTION 
There is no doubt that number of robots 

designed by state-of-the technologies used for 
both military and non-military purposes is 
significantly increasing. Fields of possible 
applications of the robots and robot systems 
are as follows: investigation of the climate 
changes; air reconnaissance of flooding; 
elimination of consequences of the disasters; 
industrial catastrophes and theirs control; 
urban security applications; urban control of 
traffic of public transport; surface recce 
missions using ground robots; underwater 
applications; recce of dangerous areas; recce 
about safety and security items; solution of 
problems of defense of the critical 
infrastructure. Main purpose of the author is to 
design an optimal controller for the UAV 
being controlled along its vertical axes, i.e. 
vertical motion is controlled. 

2. LITERATURE REVIEW 
Mathematical models of the dynamical 

systems are outlined in [2,3,4,10]. They deal 
with analysis and design problems. Theoretical 
backgrounds of the automatic flight control 
systems are in [8], providing large scale of 
aircraft models, and giving examples for 
optimal control of aircraft. UAV systems are 

investigated in [1,5,6,12,13,]: there are many 
analysis and design examples applied to 
present latest results of robotics, mechatronics, 
and, sensorics. In [14] dynamic performances 
are summarized, and used in this paper. In [9] 
dynamic performances and stability analysis is 
shown for micro UAV: a complex task is made 
for deriving dynamical model of micro 
rotating UAV. Pokorádi in [11] deals with 
deterministic signals applied in control system 
analysis. Computer-aided design and analysis 
is supported by computer package MATLAB 
[3, 7]. 

 
3. DYNAMIC MODEL OF THE 

QUADRTOTORS 
The quadrotor dynamics may be analyzed 

using Figure 1. [1,5,6,9,12,13]. Maneuvering 
along vertical axis is a common task, e.g. 
change height of the flight from the initial 
hovering position. The coordinate system I 
represent the system of inertia, the body-axis 
system centre is fixed in point B. 

The rate of changes of the Euler-angles in 
the body-axis system may be derived as [12]: 
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The lift force generated by the ith rotor 
blades is proportional to its squared rotational 
speed, i.e. we have [5, 12]: 

where: φ  is bank angle; θ  pitch angle; ψ  yaw 
angle; 

ixω  angular rates of changes in the 
inertia system I, 

bxω  are angular rates of 
changes in the body-axis coordinate system. It 
is well-known that rotational matrices between 
two coordinate systems given above are as 
follows [12]: 
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where: ;  is aerodynamic 
coefficient; 
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Figure 1. Quadrotor dynamics and kinematics. 

 
For further investigations we will consider 

dynamics of the quadrotor in the body axis 
system, the following matrix equation must be 
defined: 

[ ] [ ]T
iii

-T
bbb zyxzyx  1 

&&&&&& A= , (3.2) 
where  are coordinates in the 
body-axis coordinate system, and  are 
the coordinates measured in the inertia system. 

bbb zyx ,,

iii zyx ,,

3.1 Equations of motion of the 
translational motion of the quadrotor. It is 
assumed that quadrotor has rigid and 
symmetric airframe and we will consider it 
with its mass concentrated in point B (see 
Figure 1.). Quadrotor owns rigid rotor blades, 
and finally, there is considered only motion 
along vertical axis of body-axis coordinate 
system . bZ

ρ  is air density;  is resulting 
area of the rotor blades; 

pA

iα  is angular speed of 
the ith rotor blades;  is radius of the rotor 
blades; L is a distance measured between 
centre point of the blades and point B; 

pR

P  is a 
setting angle of the rotor blades;  is a 
component vector of the atmospheric 
turbulence projected to vertical axis. It is 
obvious that: C=1, if i=1, or i=4; C= –1, if i=2, 
or i=3; 

bzw

, if i=1, or i=3; 
byS ω=

bxS ω= , if i=2, 
or i=4 [5,6,12]. 

The resulting force acting along 
longitudinal axis of the quadrotor may be 
derived as: 
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where:  friction coefficients;  and  
are components of the speed of the turbulent 
air along axis x–, and y–, respectively. 
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bywus kk ,

The quadrotor translational motion state 
equation may be derived as follows below: 
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where g is the gravitational acceleration 
and m is the mass of the UAV being 
investigated. 

3.2 Equations of motion of the rotational 
motion of the quadrotor. It is well-known 
that drag moment of the rotor blades due to its 
rotational motion is proportional to the speed 
of its revolution, i.e. one can derive that: 
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where: ;  is the moment R pipd AkC 32
2 αρ= dk

1191



 
  

            “HENRI COANDA”                                                                                                                GERMANY                                                                                “GENERAL M.R. STEFANIK” 
     AIR FORCE ACADEMY                                                                                                                                                                                                                   ARMED FORCES ACADEMY 
                 ROMANIA                                                                                                                                                                                                                                      SLOVAK REPUBLIC 
 

INTERNATIONAL CONFERENCE  of  SCIENTIFIC PAPER 
AFASES 2011 

Brasov, 26-28 May 2011 

 
coefficient. The resulting reaction moment of 
the rotor blades may be derived using 
following equation: 

, (3.12) imip DGJ
i
−= τα&

R
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where  is the moment of inertia of a single 
rotor blade. 

pJ

The friction drag moment may be derived 
as follows below: 
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, (3.8) 

 is the motor moment; 

 is a motor constant;  is a motor constant 
for rotation speed;  is a motor control 
voltage; R is a motor resistance; G is a 
constant transmission gain of the system 
“motor-rotor blade”. 

ik vk
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Let us find dynamics of the quadrotor in 
motion along vertical axis, for the initial 
conditions defined as: 

where:  is a friction coefficient. The 
resulting disturbances (e.g. gust) related to 
DC-motor rotors may be found using 
following formula [16]: 
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The gyroscopic moment may be derived 
as: 
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Using equations (3.1)–(3.5), and 
considering initial conditions of (3.13) 
translational motion of the quadrotor along 
vertical axis may be derived as: 

where: . 4321 ααααα +−+−=
g
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Finally, using equations defined above, the 

state equation of the quadrotors spatial 
rotational motion may be derived as [5,6,12]: 

or, in other manner 
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g + Lift generated by rotor blades may be 
derived as: ,(3.11) 
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is a main matrix of inertia; , ,  are 
moments of inertia related to axes , , 
and , respectively. 
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Let us substitute equation (3.16) into 
equation (3.15), it yields to: 
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3.3 Dynamics of the quadrotor 

DC-motor. DC motors (mainly brushless 
ones) are widely applied in propulsion systems 
of quadrotors. So, theirs equation – for small 
inductances – may be derived as [5,6,12]: 

and rearranging equation (3.17), one may 
write: 
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and, finally, doing some mathematical 
arrangements, we get following formula: 
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Using hypothetical quadrotor data given in 
[16] following equation of motion may be 
derived: 
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 Let speed of rotation of DC-motors be the 
following: 

Figure 2b. Results of the Time Domain Transient 
Response. min/1000rev

oi =α . Thus, equation 
(3.20) may be rewritten in the following 
manner: 
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Step response function shows that at the 
end of very fast response, the UAV will start 
to maneuver along vertical axis, and starts to 
ascend with constant speed of, say, 
approximately, 0,16 m/s. Step response 
function also predicts stable UAV behavior. 

Using equation (3.21) transfer function of 
the UAV may be derived as [12]: 
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Figure 3. describes the frequency domain 
behavior of the UAV. 
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For further investigations UAV model was 
analyzed in time domain, and in frequency 
domain. Results of the computer simulation 
may be seen in Figure 2., and Figure 3 [3, 7]. 

From Figure 2 it is evident that reaction of 
the quadrotor is fast. The impulse response 
function is derives, that the open loop UAV is 
the stable one.  
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Figure 3. Bode Diagram of the UAV. 

From Figure 3 it is evident that the 
quadrotor has low-pass behavior, in high 
frequency ranges it is cutting off signals. 

 
4. LQ-BASED CONTROLLER 

SYNTHESIS FOR VERTICAL SPEED 
OF THE QUADROTOR 

The linear, multi input, multi output 
(MIMO) system dynamics may be defined 
using state, and output equation given below 
[2, 4, 8, 12]: 

 
Figure 2a. Results of the Time Domain Transient 

Response. 
 

DuCx=y;BuAxx   = +& + , (4.1) 
where x is state vector, u is the input vector, y 
is the output vector, A is the state matrix, B is 
the input matrix, C is the output matrix, and 
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finally, D is the direct feedforward matrix. 

For MIMO control systems integral criteria 
to be minimized may be derived as [2, 4, 8]: 

( ) indtJ M    
2
1 = 

0
→∫

∞
uR u x  Qx TT + , (4.2) 

where Q and R are positive semi-definite, and 
positive definite, diagonal weighting matrices, 
respectively. 

The term  in equation (4.2) defines 
dynamic performances, while term  
describes costs. These terms are quadratic 
ones, because of following formulas: 
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Using equations (4.3) and (4.4) it is easy to 
be seen that integral performance criteria 
minimizes integrals from squared functions of 
those  and . )(2 txi )(2 tu j

4.1 The algebraic Ricatti equation 
(ARE). It is supposed that state equation of the 
dynamic system is given as follows: 

 B x   A= x +& . (4.5) 
The optimal control law is given as 

(t)  )( x Kuo −=t , (4.6) 
which minimizes integral criterion (4.2). The 

optimal control is solved for any initial 
condition of , if static feedback gain 
matrix 

x(0)
K is derived. Block diagram of the 

optimal control system is given in Figure 4. 
Let reference the signal be zero value one, i.e. 

. 0)( =txr

 
Figure 4. Block Diagram of the Optimal 

Control System. 
 
Substituting equation (4.6) into equation 

(4.5) results in the following formula 
.  (4.7) = =&x Ax BKx (A BK)x- -

Supposing that matrix  has 
eigenvalues with negative real parts. 
Substituting equation (4.7) into equation (4.2) 
yields to: 
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For minimization of the integral 
performance criterion (4.2) we will use second 
method of Ljapounov. It is supposed that for 
any state vector exists a positive definite 
Hermite-matrix, P, so that take place P PT= . 
For this particular case takes place following 
condition: 

Px)(x   RK)x K+(Qx TTT
dt
d

−= . (4.9) 

Taking derivative of matrix , and 
considering equation (4.9) results in: 
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Using second method of, if matrix 
 has eigenvalues with negative real 

parts, than for positive definite matrix 
 exists positive definite matrix P, 

such that takes place following equation: 

Thus, equation (4.16) may be derived as: 
)-( BKA

RKKQ T+

RK)K+(Q-  BK)-P(A+PBK)-(A TT = (4.11) 
Equation (4.11) is known as Ljapounov 

equation. The integral performance index may 
be derived as: 
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Supposing that all eigenvalues of matrix 
A BK-  have negative values, thus takes place 
that . In this case equation (4.12) 
may be rewritten in the following manner: 

0) →∞x(

J 0 0 =  x ( )Px( )T . (4.13) 
From equation (4.13) it is easily may be 

seen that integral criteria (4.12) is a function of 
the initial conditions of x(0). It is known that 
weighting matrix R is positive definite, 
Hermite-matrix, i.e. takes places following 
equation: 

R =  T TT , (4.14) 
where T is a non-singular (regular) matrix. 
Considering equation (4.14) equation 

(4.11) may be rewritten as follows below: 
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Rearranging equation (4.15) yields to the 
following formula: 
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Minimizing integral criteria (4.2), in other 
words, derivation of the optimal state feedback 
static gain matrix K, means mimization of the 
matrix product of 
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Since matrix defined by equation is a 
non-negative one, thus equation (4.18) takes a 
minimum if 

( ) PBT1T = 
−

TTK . (4.20) 
Let us find optimal static feedback gain 

matrix K from equation (4.20), thus we have: 

( ) PBRTTKo T1T1T1  =  = −−− PB . (4.21) 
The optimal control law is as follows 

below: 
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For derivation of matrix P there is often 
used method of algebraic Ricatti equation 
(ARE): 

0 = +-+ T1 T QPBPBRPAPA − . (4.23) 
Solution of the LQR controller synthesis 

problem consists of following steps: using 
equation (4.23) positive definite cost matrix P 
must be derived; substituting matrix P into 
equation (4.22), what is optimal control law. 

. (4.16) 

It is known that , and 
, the term in brackets in 

equation (4.16), may be rewritten as follows: 

The optimal static feedback gain matrix K 
may be derived using MATLAB supplemented 
with Control System Toolbox. The built-in 
files of the proposed software may be used for 
solution of this problem are lqr.m, and lqr2.m. 
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4.2 Preliminary design of the Height 
Control System of the Quadrotor. Block 
diagram of the height control system of the 
UAV may be seen in Figure 5. 

. (4.17) 

 
Figure 5. UAV Height Control System. 

Using Figure 5. state equations of the UAV 
height control system of the quadrotor may be 
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[ ] [ ]16449,31 == sc KKKderived as: . (4.29) 
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= Δα →
+

→ = − + Δα
, (4.24) 

Results of the computer simulation of the 
closed loop control system for )(1)( ttHr =  
may be seen in Figure 7 [3, 7]. 

.1( ) ( ) ( ) ( )b bH s v s H t v
s

= → = t , (4.25) 

0 2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
UAV Flight Parameters

Time [s]

vb
(t)

-H
(t)

or in matrix form: 
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Results of the uncontrolled UAV transient 
response analysis may be seen in Figure 6. 
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Figure 7. Controlled UAV Step Responses 

Vertical Speed           Altitude 
 
Dynamic performances of the closed loop 

height control system designed by weights of 
(4.28) are as follows: 

 

 
Figure 6. Uncontrolled UAV Step Responses 

Vertical Speed           Altitude 
 
Control law of the closed loop control 

system may be found using Figure 5, and it is 
as follows below: 

( ) ( ) ( ) ( )i c b st t H t K v t K= Δα = − − = −u Kx

]
]

,(4.27) 

where:  is the state vector, 
 is the static feedback gain 

matrix. 

[ T
b Hv=x

[ sc KK=K

Let find the optimal static feedback gain 
matrix, i.e. the optimal control law. For the 
first set of weighting matrices choose them by 
rule of unit weights, thus, we have: 

1;
10
01

11 =⎥
⎦

⎤
⎢
⎣

⎡
= rQ . (4.28) 

In this case the static gain is as follows [3]: 

Eigenvalues Damping 
ratio, 

Frequencies, 
[rad/s] ξ  

i27,0293,0 ±− 0,735 0,399 
 
From Figure 7 it may be seen that 

steady-state value of the height of the flight is 
mH 7,3)( ≈∞ , i.e. the reference signal yields to 

larger output from the system, and the closed 
loop control system dynamic performances are 
do not match those dynamic performances 
defined in [14]. However it is worth to 
mention that due to lack of complex set of 
dynamic performances for UAV automatic 
flight control systems, the standard [14] what 
is for aircraft piloted by human, was used 
instead. Let us change weighting matrices 
defined by equation (4.28) heuristically, to be 
as follows: 

2 2
0,97 0

; 0,000005
0 1

r⎡ ⎤
= =⎢ ⎥
⎣ ⎦

Q . (4.30) 
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Using weights (4.30) the static feedback 
gain matrix was found to be [3, 8]: 

[ ] [ ]2 446,7565 447,2136c sK K= =K
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.(4.31) 
Results of the computer simulation of the 

closed loop control system for given weights 
of (4.30), and for given step function 
of , may be seen in Figure 8 [3, 7]. )(1)( ttHr =
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Figure 9-b. Controlled UAV Step Responses     

Q1-R1         Q2-R2. 
 
Results of the computer simulation of two 

designed systems for weights of (4.28), and 
(4.30), may be seen in Figure 9. From Figure 
9. it is easily may be derived that heuristically 
set weighting matrices can derive namely that 
optimal control law, what will be able to 
provide dynamic performances of the closed 
loop altitude control system of the UAV [3, 7]. 

 
Figure 8. Controlled UAV Step Responses 

Vertical Speed           Altitude 
 
Dynamic performances of the UAV closed 

loop height control system designed by 
weights of (4.30) are as follows: 

 
5. CONCLUSIONS 

 
Eigenvalues Damping 

ratio, ξ  
Frequencies, 

[rad/s] 
70−  1 70 
02,1−  1 1,02 

This paper deals with optimal control 
system design. The method propagated here is 
the LQR one, which is widely applied as 
preliminary design method for controller 
synthesis of UAVs. 

The optimal control law synthesis is 
executed using heuristic setting of the 
weighting matrices in integral performance 
index. Dynamic performances were considered 
for those defined for piloted aircraft. 

 
From Figure 8. it may be seen that steady-

state value of the height of the flight is 
. mH 1)( =∞

In other words, the unit value reference 
input is followed with no static error, and the 
closed loop dynamic performances are those 
defined for aircraft as given in [14]. 
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